2023 Fiscal Year Final Research Report
Coproduction with exergy recuperation technology using thermal storage catalysts.
Project/Area Number |
22K18993
|
Research Category |
Grant-in-Aid for Challenging Research (Exploratory)
|
Allocation Type | Multi-year Fund |
Review Section |
Medium-sized Section 31:Nuclear engineering, earth resources engineering, energy engineering, and related fields
|
Research Institution | Hokkaido University |
Principal Investigator |
|
Co-Investigator(Kenkyū-buntansha) |
國貞 雄治 北海道大学, 工学研究院, 准教授 (00591075)
|
Project Period (FY) |
2022-06-30 – 2024-03-31
|
Keywords | エクセルギー再生 / コプロダクション / 触媒 / 蓄熱 / 熱制御 / マイクロカプセル |
Outline of Final Research Achievements |
Thermal control of catalytic reactions is one of the most important factors influencing catalyst performance and lifetime. Considering that reactions occur at the nano- and micro-scale in the vicinity of the catalyst, it is necessary to evolve from conventional apparent thermal management techniques at the mm and cm scale at the reactor design level, such as multi-tube and plate type heat exchanger, to reaction thermal managements at the nano- and micro-scale. In this study, the development of a thermal energy storage catalyst with heat receiver/donor functionality, capable of high heat capacity and constant temperature heat input/output, was achieved by catalyst/catalyst support on core-shell type phase change microcapsules. Furthermore, the possibility of designing a new heat storage-type reactor capable of coproduction with exergy recuperation technology was experimentally demonstrated.
|
Free Research Field |
エネルギー化学工学
|
Academic Significance and Societal Importance of the Research Achievements |
開発した蓄熱触媒の基本コンセプトは、使用する触媒や相変化マイクロカプセルの種類を適切に選択することであらゆる反応系に応用することができる。先行研究にて広い温度範囲で作動可能な相変化マイクロカプセルの製造技術の基礎を確立していることから、本研究で主ターゲットとしたCO2メタネーション(発熱反応)やアンモニア分解(吸熱反応)への適用など早期の実装もまた視野に入る。この蓄熱触媒を使ったエクセルギー再生コプロダクションは、排熱そのものを発生させない化学プロセスを実現できる。即ち、既往の排熱利用のパラダイムを「排熱レス」技術基盤のパラダイムへとシフトさせる可能性がある。
|