• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Elucidation of factors controlling solute membrane shape formed after droplet evaporation around complex structures

Research Project

  • PDF
Project/Area Number 22K20397
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0301:Mechanics of materials, production engineering, design engineering, fluid engineering, thermal engineering, mechanical dynamics, robotics, aerospace engineering, marine and maritime engineering, and related fields
Research InstitutionTohoku University

Principal Investigator

SUGIMOTO Makoto  東北大学, 工学研究科, 助教 (60966852)

Project Period (FY) 2022-08-31 – 2024-03-31
Keywords気液混相流 / 格子ボルツマン法 / フェーズフィールドモデル / 熱物質輸送 / 電磁気力
Outline of Final Research Achievements

The initial goal of this study was to develop a phase-field lattice Boltzmann method for simulating the temperature field of solid-gas-liquid three phases. However, it was found that an unphysical heat transport occurs at the gas-liquid interface. This problem is considered to be caused by an unphysical velocity field due to the imbalance between pressure and interfacial tension at the gas-liquid interface. The unphysical velocity field induces the unphysical heat transport by substituting it into the advection term of the thermal energy transport equation. As a first step to solve the problem, a lattice Boltzmann method for solving the diffusion equation without the advection term was developed. The developed method can be applied to simulate electrically conductive gas-liquid multiphase flows by solving the steady-state diffusion equation for the electromagnetic potential.

Free Research Field

流体工学

Academic Significance and Societal Importance of the Research Achievements

本研究で開発した数値シミュレーション手法を用いて,交流ティグ溶接における溶融電極の飛散現象の解明を行った.ティグ溶接において用いられるタングステン電極は,溶融して飛散することが知られている.タングステン電極の放出は電極の消耗を早め,さらに放出されたタングステン液滴が溶接部に混入することで溶接品質の低下を招く.本研究では,数値シミュレーションによって流体運動を再現しながら,液滴飛散の力学なメカニズム解明を試みた.シミュレーション結果より,液滴の飛散には液柱のくびれた部分に作用する電磁気力と界面張力が重要な役割を果たすことがわかった.本知見は,溶接技術の向上に資すると期待される.

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi