2023 Fiscal Year Final Research Report
Development of highly heat-conductive and low stiffness joint utilizing anisotropic microcomposite structure
Project/Area Number |
22K20480
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0401:Materials engineering, chemical engineering, and related fields
|
Research Institution | Osaka University |
Principal Investigator |
|
Project Period (FY) |
2022-08-31 – 2024-03-31
|
Keywords | エレクトロニクス実装 / はんだ / ポーラス材料 / 熱伝導性 / 接合 / ロータス型ポーラス銅 |
Outline of Final Research Achievements |
The microscale composite structure within the bonding layer was evaluated for its excellent thermal conductivity and high-temperature stability. In particular, we aimed to develop a bonding process and demonstrate the performance of a joint with an anisotropic composite structure in which highly thermally conductive materials are oriented in the direction of heat transfer. Thermal conductivity was measured and high-temperature stability was evaluated for the joints obtained by molten solder infiltering into the unidirectionally oriented pores of a lotus-type porous Cu (Lotus Cu) sheet. The results showed that the Lotus Cu/solder composite joints exhibited excellent thermal conductivity and stable joint strength at 200 °C. It was also shown that the anisotropic composite structure of the joints is effective in controlling their properties, and it is expected that this approach will contribute to the enhancement of the functionality of the joints in semiconductor devices.
|
Free Research Field |
材料科学
|
Academic Significance and Societal Importance of the Research Achievements |
半導体デバイスの高電流密度化と高性能化に際して求められる接合部の高熱伝導性と高温安定性を実現する手法として、高熱伝導材料を伝熱方向に配向させた異方的な複合構造の接合部を創出することの有効性を実証することができた。これは、近年の半導体デバイスの急速な発展を支える重要な接合技術として社会的に大きな貢献を果たすだけでなく、従来の金属組織制御では実現できない特性の大幅な改善が期待される新しい接合部の特性制御方法として学術的にも大きな意義がある。
|