• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Elucidation of the adaptive mechanism of intricate human motion imitated by deep reinforcement learning

Research Project

  • PDF
Project/Area Number 22K20519
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0403:Biomedical engineering and related fields
Research InstitutionNational Institute of Advanced Industrial Science and Technology

Principal Investigator

Shen Keli  国立研究開発法人産業技術総合研究所, 情報・人間工学領域, 産総研特別研究員 (80965179)

Project Period (FY) 2022-08-31 – 2024-03-31
KeywordsDance adpative skills / Motor coordination / Sports biomechanics / Beat detection / Complexity analysis / Deep RL / Computational modeling / Beat-aligned synergies
Outline of Final Research Achievements

We developed a TD-PCA approach to extract beat-aligned motor synergies from street dance datasets, leveraging the first synergy to improve kinematic beat detection and enable accurate beat alignment with music. The enhancement was verified through cross-validation. We simulated deep reinforcement learning models reproducing dance skills, analyzing them kinematically/kinetically, demonstrating our methods' effectiveness for studying AI- generated dance movements.

Free Research Field

神経計算、ロボット工学、バイオメカニクス

Academic Significance and Societal Importance of the Research Achievements

我々の計算フレームワークは、複雑なダンスモーションを分析し、ダンスジャンルの運動メカニズムを理解し、動きのダイナミクスと音楽の関係についての洞察を提供し、ダンス研究、パフォーマンス分析、トレーニング、怪我の予防に応用できる。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi