2023 Fiscal Year Final Research Report
Electrochemical self-assembly of metal/organic hybrid electrode for CO2 reduction electrocatalysis
Project/Area Number |
22K20562
|
Research Category |
Grant-in-Aid for Research Activity Start-up
|
Allocation Type | Multi-year Fund |
Review Section |
0502:Inorganic/coordination chemistry, analytical chemistry, inorganic materials chemistry, energy-related chemistry, and related fields
|
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
Tsuda Yuki 国立研究開発法人産業技術総合研究所, エネルギー・環境領域, 研究員 (80964189)
|
Project Period (FY) |
2022-08-31 – 2024-03-31
|
Keywords | 二酸化炭素還元 / 電極触媒 / 無機/有機ハイブリッド材料 / 電解析出法 |
Outline of Final Research Achievements |
In this study, a metal/organic hybrid electrocatalyst was developed with the objective of achieving highly active and highly selective electrochemical reduction of carbon dioxide (CO2). The catalyst was designed to combine a metal with high CO2; electrolysis activity, which is naturally present in the metal, with a polymer that is expected to stabilise the electrolytic reaction intermediates. Copper, which is known to produce hydrocarbons, was selected as the metal component, while luminol and melamine were selected as the organic components, as they have been demonstrated to adsorb CO2 to a reasonable extent and are expected to be highly reactive due to their high cation density. Luminol and melamine were polymerised by electrolytic polymerisation on carbon paper, the substrate, in order to achieve good contact with the substrate and high conductivity. A metallic copper coating was applied to the polymer film to create a hybrid catalyst comprising both a metal and an organic component.
|
Free Research Field |
電気化学
|
Academic Significance and Societal Importance of the Research Achievements |
本研究で目指した、金属/有機ハイブリッドCO2還元電極触媒は、金属がCO2を還元し、高分子がCO2電解生成物の安定化を担うという新しい考え方である。これにより、高活性・高選択性を両立するCO2電解還元触媒の実現が期待できる。導電性基板上に有機物を電解重合してその上に金属を電解析出法で得られることで金属/有機ハイブリッド電極を実証した。電解重合も電解析出法も、高温や高圧を要しない溶液プロセスであり、環境負荷が小さい手法である。金属/有機ハイブリッド電極の最適化までには至っていないが、作製可能であることの確認という点において有意義であり、コンセプト実証への第一歩であると確信している。
|