• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Final Research Report

Development of a COVID-19 Epidemic Risk Map Using Geographic Information Systems (GIS) and 3D Urban Models

Research Project

  • PDF
Project/Area Number 22K21188
Research Category

Grant-in-Aid for Research Activity Start-up

Allocation TypeMulti-year Fund
Review Section 0908:Society medicine, nursing, and related fields
Research InstitutionOsaka Medical and Pharmaceutical University

Principal Investigator

Horiike Ryo  大阪医科薬科大学, 看護学部, 助教 (00842056)

Project Period (FY) 2022-08-31 – 2024-03-31
KeywordsGIS / 空間スキャン検定 / 感染症 / 根拠に基づく政策立案 / 保健師 / 公衆衛生看護 / COVID-19
Outline of Final Research Achievements

Using human flow data and the spatial scan statistic, a method in spatial epidemiology, it has become possible to identify human flow clusters that could contribute to infectious disease outbreaks and estimate the characteristics of cluster occurrence sites from open data. Particularly, the use of spatial scan statistics allowed for results that surpassed those provided by the shading intensities in GIS mappings or descriptive statistics. Specifically, the ability to calculate relative risks enabled a quantitative determination of whether the clusters were statistically significant. This is crucial for advancing evidence-based policy-making.

Free Research Field

公衆衛生看護学

Academic Significance and Societal Importance of the Research Achievements

この研究では、COVID-19流行前の人の移動パターンを空間スキャン統計とGISを用いて検出し、クラスター領域の特性を分析した。主要な発見は、鉄道駅周辺、人口密集した商業地区、スポーツフィールド、大規模建設現場でクラスターが高リスクであることである。これにより、新興感染症の迅速な管理や証拠に基づく政策形成が促進される。また、通常時のデータを基に事前警告を発することで、移動制限を最小限に抑えつつ感染拡大を防ぐことが可能となる。

URL: 

Published: 2025-01-30  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi