• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Annual Research Report

植物-微生物叢相互作用のマルチオミクス階層モデリングとその高速アルゴリズムの開発

Research Project

Project/Area Number 22KJ0656
Allocation TypeMulti-year Fund
Research InstitutionThe University of Tokyo

Principal Investigator

Dang Tung  東京大学, 農学生命科学研究科, 特別研究員(DC1)

Project Period (FY) 2023-03-08 – 2024-03-31
Keywordsintegrative analysis / variational inference / Bayesian model / variable selection / microbiome / metabolome
Outline of Annual Research Achievements

In my Ph.D. research (DC1), the methodologies of Random Forest with Forward Variable Selection (RF-FVS), Stochastic Variational Variable Selection (SVVS), and Integrative Stochastic Variational Variable Selection (I-SVVS) introduce crucial tools for multi-omics microbiome data analysis. These approaches effectively tackle challenges like high dimensionality, computational efficiency, and feature selection. While these methods have demonstrated their worth in analyzing 16S ribosomal RNA microbiome datasets, they do have limitations. Factors like short read lengths from sequencing, potential sequencing errors, and variability stemming from sequencing region choices can limit the accuracy and comprehensiveness of taxonomic profiles. Future expansions of these methodologies will involve comprehensive analyses integrating diverse host databases. These include the host genome, transcriptome, proteome, and metabolome, alongside microbiome databases covering whole metagenome, metatranscriptome, and metaproteome. This broader scope will accommodate various types of data, including multicategory data (e.g., copy number states: loss/normal/gain), binary data (e.g., mutation status), and count data (e.g., sequencing data).

  • Research Products

    (7 results)

All 2023 Other

All Journal Article (2 results) Presentation (3 results) (of which Int'l Joint Research: 2 results) Remarks (2 results)

  • [Journal Article] oFVSD: a Python package of optimized forward variable selection decoder for high-dimensional neuroimaging data2023

    • Author(s)
      Dang Tung、Fermin Alan S. R.、Machizawa Maro G.
    • Journal Title

      Frontiers in Neuroinformatics

      Volume: 17 Pages: 1-14

    • DOI

      10.3389/fninf.2023.1266713

  • [Journal Article] An integrative framework of stochastic variational variable selection for joint analysis of multi-omics microbiome data2023

    • Author(s)
      Dang Tung、Fuji Yushiro、Kumaishi Kie、Usui Erika、Kobori Shungo、Sato Takumi、Toda Yusuke、Sakurai Kengo、Yamasaki Yuji、Tsujimoto Hisashi、Hirai Masami Yokota、Ichihashi Yasunori、Iwata Hiroyoshi
    • Journal Title

      bioRxiv

      Volume: 1 Pages: 1-25

    • DOI

      10.1101/2023.08.18.553796

  • [Presentation] A method for clustering high-dimensional microbiome data and selecting representative microbial species2023

    • Author(s)
      Tung Dang and Hiroyoshi Iwata
    • Organizer
      The 10th International Conference on Chemical and Biological Sciences (ICCBS 2023)
    • Int'l Joint Research
  • [Presentation] An integrative framework of stochastic variational variable selection for joint analysis of multi-omics microbiome data2023

    • Author(s)
      Tung Dang and Hiroyoshi Iwata
    • Organizer
      Japanese Joint Statistical Meeting 2023, SESSION: Bayesian statistics
  • [Presentation] Decoding time-course of saliency network of fMRI signals by EEG signals using optimized forward variable selection: a concurrent EEG-fMRI study2023

    • Author(s)
      Tung Dang, Kentaro Ono, Takafumi Sasaoka, Shigeto Yamawaki,and Maro G. Machizawa
    • Organizer
      The Asia Pacific Signal and Information Processing Association (APSIPA), SPECIAL SESSION: Advanced Biomedical Signal Processing (II): Brain Signal Processing and Analysis Taipei, Taiwan.
    • Int'l Joint Research
  • [Remarks] youtube

    • URL

      https://www.youtube.com/watch?v=b2i4vJpgTb0&t=3s

  • [Remarks] youtube

    • URL

      https://www.youtube.com/watch?v=20OzVqPpn20

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi