• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Annual Research Report

Fundamental Technologies for Machine Learning Centric Data Trading

Research Project

Project/Area Number 22KJ1721
Allocation TypeMulti-year Fund
Research InstitutionOsaka University

Principal Investigator

鄭 舒元  大阪大学, 情報科学研究科, 特任助教

Project Period (FY) 2023-03-08 – 2024-03-31
Keywordsdata trading / data protection / GDPR / computer simulation / large language model
Outline of Annual Research Achievements

Our contributions for this fiscal year are twofold. First, we conducted an interdisciplinary study on data protection in data markets. This study discusses the ambiguous boundaries among different categories of user data as defined in the GDPR from a legal perspective and proposes a computational method to delineate these boundaries clearly. Second, we developed a computer simulation framework to simulate data trading in practice. This framework employs large language model agents to represent the various parties in data markets and to simulate their interactions during data trading. Based on the simulation results, we can more accurately assess the performance of data trading mechanisms in society, thereby fostering trustworthy data trading.

  • Research Products

    (2 results)

All 2024 2023

All Journal Article (1 results) (of which Int'l Joint Research: 1 results,  Peer Reviewed: 1 results,  Open Access: 1 results) Presentation (1 results)

  • [Journal Article] Using Differential Privacy to Define Personal, Anonymous, and Pseudonymous Data2023

    • Author(s)
      Tao Huang, Shuyuan Zheng
    • Journal Title

      IEEE Access

      Volume: 11 Pages: 109225-109236

    • DOI

      10.1109/ACCESS.2023.3321578

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Presentation] SABM:大規模言語モデルに基づくエージェントベース実世界シミュレーション2024

    • Author(s)
      呉 増青、彭 潤、韓 勗、鄭 舒元、肖 川
    • Organizer
      第16回データ工学と情報マネジメントに関するフォーラム

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi