• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Research-status Report

混合ノルムを用いた関数空間の発展とその偏微分方程式への応用

Research Project

Project/Area Number 22KJ2771
Allocation TypeMulti-year Fund
Research InstitutionChuo University

Principal Investigator

野ヶ山 徹  中央大学, 理工学部, 特別研究員(PD)

Project Period (FY) 2023-03-08 – 2025-03-31
KeywordsBourgain-Morrey空間 / 重み付き不等式 / 最大正則性評価
Outline of Annual Research Achievements

本研究課題の目的は、作用素の有界性や関数の分解という観点から混合ノルムを用いて関数空間の構造を解析し、偏微分方程式へ応用することである。今年度は、Bourgain-Morrey空間における荷重の理論と熱方程式の最大正則性評価について研究を行い、いくつかの結果を得た。以下、研究実績について述べる。
1.数列ノルムとルベーグノルムを組み合わせることで定義されるBourgain-Morrey空間においてHardy-Littlewoodの極大作用素の重み付き有界性について考察した。まず、1つのモデルケースとして、べき乗関数を重みとして採用し、Hardy-Littlewoodの極大作用素が有界になるためのパラメータ条件の必要十分性を検討した。結果は2つあり、局所Bourgain-Morrey空間では、通常の局所Morrey空間における同様の問題のパラメータ条件と変わらないという結果を得た。一方で、Bourgain-Morrey空間においては、通常のMorrey空間におけるパラメータ条件と少しずれるという結果を得た。条件がずれている分は新たに導入したパラメータが影響を及ぼしている。また、局所Bourgain-Morrey空間とBourgain-Morrey空間で条件が異なるのは、足し上げを行う立方体の総数の差によるものであることが予想される。
2.熱方程式の最大正則性評価について、以前得られた結果を基にしベゾフ型の関数空間に対する同様の評価を考察した。特に、この性質を考察するときのキーワードである関数空間の反射性に関係なく、熱半群の減衰評価とHardy-Littlewoodの極大作用素のベクトル値有界性を用いることでこの評価を示すことができる。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

Bourgain-Morrey空間と古典的なMorrey空間の違いについて荷重の観点から結果を得ることができたため。

Strategy for Future Research Activity

Bourgain-Morrey空間におけるHardy-Littlewoodの極大作用素の重み付き有界性を一般の荷重について考察する、その際にCarlesonの埋め込み定理が関連していることが予想されているので、その点について詳しく調べていく。

Causes of Carryover

疾病のため、参加予定であった研究集会への参加を取りやめたため。
今年度は国内外で開催される研究集会への参加し、情報収集を行うために使用する予定である。

  • Research Products

    (12 results)

All 2024 2023

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (10 results) (of which Int'l Joint Research: 1 results,  Invited: 5 results)

  • [Journal Article] Littlewood-Paley and wavelet characterization for mixed Morrey spaces2024

    • Author(s)
      Nogayama Toru
    • Journal Title

      Mathematische Nachrichten

      Volume: - Pages: -

    • DOI

      10.1002/mana.202300249

    • Peer Reviewed
  • [Journal Article] Weighted local Hardy spaces with variable exponents2023

    • Author(s)
      Izuki Mitsuo、Nogayama Toru、Noi Takahiro、Sawano Yoshihiro
    • Journal Title

      Mathematische Nachrichten

      Volume: 296 Pages: 5710~5785

    • DOI

      10.1002/mana.202200248

    • Peer Reviewed
  • [Presentation] 熱方程式の最大正則性評価の導出について2024

    • Author(s)
      野ヶ山徹
    • Organizer
      第18回 非線形偏微分方程式と変分問題
  • [Presentation] Maximal inequalities on weighted Bourgain-Morrey spaces2024

    • Author(s)
      野ヶ山徹
    • Organizer
      第39回調和解析セミナー
  • [Presentation] Maximal regularity in Besov-Morrey spaces and its application to Keller-Segel equations2023

    • Author(s)
      野ヶ山徹
    • Organizer
      京都大学NLPDEセミナー
    • Invited
  • [Presentation] Maximal regularity in Besov-Morrey spaces and its application to Keller-Segel equations2023

    • Author(s)
      野ヶ山徹
    • Organizer
      東北大学応用数理解析セミナー
    • Invited
  • [Presentation] Maximal regularity in Besov-Morrey spaces2023

    • Author(s)
      野ヶ山徹
    • Organizer
      Harmonic Analysis and its Applications 2023
    • Int'l Joint Research / Invited
  • [Presentation] Littlewood-Paley characterization for mixed Morrey spaces2023

    • Author(s)
      野ヶ山徹
    • Organizer
      日本数学会2023度秋季総合分科会
  • [Presentation] Littlewood-Paley characterization for mixed Morrey spaces2023

    • Author(s)
      野ヶ山徹
    • Organizer
      RIMS研究集会(RIMS Workshop):関数空間を中心とした実解析・複素解析・函数解析の総合的研究
  • [Presentation] Littlewood-Paley characterization for mixed Morrey spaces2023

    • Author(s)
      野ヶ山徹
    • Organizer
      実解析学シンポジウム2023
  • [Presentation] The maximal regularity estimate in Besov-Morrey spaces2023

    • Author(s)
      野ヶ山徹
    • Organizer
      The 20th Linear and Nonlinear Waves
    • Invited
  • [Presentation] Besov-Morrey空間における熱方程式の最大正則性評価とその応用2023

    • Author(s)
      野ヶ山徹
    • Organizer
      茨城高専数学セミナー
    • Invited

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi