2023 Fiscal Year Research-status Report
不揮発性トンネルFETメモリを用いたスパイキングニューラルネットワークの構築
Project/Area Number |
22KK0245
|
Research Institution | Kyushu University |
Principal Investigator |
木野 久志 九州大学, システム情報科学研究院, 准教授 (10633406)
|
Project Period (FY) |
2023 – 2025
|
Keywords | 半導体メモリ |
Outline of Annual Research Achievements |
近年の人工知能の発展にともない、ニューラルネットワークの研究開発が非常に活発化している。現在、主として用いられているニューラルネットワークはディープニューラルネットワーク(Deep Neural Network: DNN)であるが、今後の処理情報の大規模化を考慮すると、消費電力の観点からDNNでは対応が厳しくなると考えられる。そこでDNNに代わり、神経のスパイク発火のタイミングまで模したスパイキングニューラルネットワーク(Spiking Neural Network: SNN)に高い注目が集まっている。本研究課題では研究代表者が作製した半導体メモリである不揮発性トンネルFETメモリによるSNN回路を作製を目的とする。提案する不揮発性トンネルFETメモリでSNNを作製するためには、不揮発性トンネルFETメモリの素子特性の分布を制御し、バラつきを抑制する必要がある。不揮発性トンネルFETメモリの特性分布を制御するため、特性分布を劣化させる要因を特定するための様々なTEG(Test Element Group)を有する素子を試作する必要がある。本年度は共同研究先に渡航し、様々な評価を可能とするTEGを有する素子のレイアウトを行った。レイアウト作成はデバイスシミュレーションによる特性予測も行いながら行った。そして、作成したレイアウトを基に研究代表者の所属機関で種々の評価を行うための素子の試作を行った。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
本年度は計画概要は不揮発性トンネルFETメモリの特性分布制御のための素子試作である。共同研究先のHanyang大学へのべ約2ヶ月滞在し、様々な評価を可能とするTEGを有する素子のレイアウトを行った。作成したレイアウトを基に国内にて素子作製を行った。以上のように当初の計画通り素子の試作を終えることが出来た。
|
Strategy for Future Research Activity |
本年度は共同研究先のHanyang大学で様々な評価を可能とするTEGを有する素子のレイアウトを行い、日本で素子の試作を行った。次年度では試作した素子の特性をHanyang大学にて測定し、特性分布を劣化させる要因の特定を行う。
|