• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Study on Information theoretic Learning Theory of Latent Dynamics

Research Project

  • PDF
Project/Area Number 23240019
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionThe University of Tokyo

Principal Investigator

Yamanishi Kenji  東京大学, 情報理工学(系)研究科, 教授 (90549180)

Co-Investigator(Kenkyū-buntansha) KASHIMA Hisashi  京都大学, 情報学研究科, 教授 (80545583)
TOMIOKA Ryota  Microsoft Research, Researcher (70518282)
Research Collaborator TERAZONO Yasushi  
SAKURAI Ei-ichi  
URABE Yasuhiro  
IWAI Hiroki  
TAKAHASHI Toshimitsu  
HIRAI So  
HAYASHI Yu  
KANAZAWA Hiroki  
SATO Sho-ichi  
SAKAI Yoshiki  
LIANG Zenghan  
OEDA Shin-ichi  
ASAOKA Ryo  
MURATA Hiroshi  
SAITO Shota  
Ito Yu  
MIYAGUCHI Kohei  
KAJIMURA Shun-suke  
BABA Yukino  
OYAMA Satohi  
KURIHARA Masahito  
WANG Jingling  
Project Period (FY) 2011-04-01 – 2016-03-31
Keywords情報論的学習理論 / データマイニング / 潜在的ダイナミクス / 機械学習 / ビッグデータ
Outline of Final Research Achievements

Data mining technologies for extracting valuable information from big data are significantly important nowadays. The main purpose of conventional data mining technologies is to extract superficial statistical patterns from data. We are rather concerned with the issue of how to learn latent information behind data and how to detect its changes, which we call “latent dynamics.” We construct a theory for learning latent dynamics from a unifying view of information-theoretic learning theory, specifically on the basis of the minimum description length principle. We also demonstrate its effectiveness through the applications to real world data (e.g. security, SNS, marketing, healthcare, education, etc.).

Free Research Field

データマイニング

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi