• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Arithmetic study of automorphic forms of many variables by various method

Research Project

  • PDF
Project/Area Number 23244003
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionThe University of Tokyo

Principal Investigator

ODA Takayuki  東京大学, 数理(科)学研究科(研究院), 教授 (10109415)

Co-Investigator(Renkei-kenkyūsha) HIRONAKA Yumiko  早稲田大学, 教育学部, 教授 (10153652)
WAKATSUKI Satoshi  金沢大学, 数物系, 准教授 (10432121)
KOSEKI Harutaka  三重大学, 教育学部, 教授 (60234770)
HAYATA Takahiro  山形大学, 大学院理工学研究科, 准教授 (50312757)
TSUZUKI Masao  上智大学, 理工学部, 准教授 (80296946)
HIRANO Miki  愛媛大学, 大学院理工学研究科, 教授 (80314946)
GON Yasuro  九州大学, 数理学研究院, 准教授 (30302508)
ISHI Taku  成蹊大学, 理工学部, 准教授 (60406650)
Project Period (FY) 2011-04-01 – 2015-03-31
KeywordsAutomorphic forms / spherical functions / Green functions / Whittaker function / modular forms
Outline of Final Research Achievements

We obtained some fundamental results on the integral expressions and power series expressions of the A-radial parts of either Whittaker functions or spherical functions for the standard representations (i.e principal series and/or discrete series representations) of the Lie groups, GL(n,R), Sp(2,R) and SU(3,1).The formulas of Whittaker functions of non-spherical principal series put a period on the research history beginning from the studies of D. Bump and others, and we can expect various applications of this result (this is a joint works with Taku Ishii of Seikei Univ.). We obtained an explicit formulas of the matrix coefficients of the large discrete series of the Lie groups SU(2,1), SU(3,1) (joint wrok with T.Hayata, H. Koseki, and T. Miyazaki).This result gives a suggestion for study of the reproducing kernels. We push forward the investigation oh the cell-decomposition of Siegel-Gottschling fundamental domain of genus 2 (the first paper was a joint paper with T. Hayata).

Free Research Field

Number Theory

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi