• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2013 Fiscal Year Final Research Report

Uncertainty informaion processing by statistical abduction

Research Project

  • PDF
Project/Area Number 23300054
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionTokyo Institute of Technology

Principal Investigator

SATO Taisuke  東京工業大学, 情報理工学(系)研究科, 教授 (90272690)

Co-Investigator(Renkei-kenkyūsha) KAMEYA Yoshitaka  名城大学, 理工学部情報工学科, 准教授 (60361789)
Project Period (FY) 2011-04-01 – 2014-03-31
Keywords確率論理 / 確率モデリング言語
Research Abstract

We have improved a logic-based modeling language PRISM which unifies statistical machine learning and logical inference by adding a general MCMC
(Markov chain Monte Carlo) method, VT (Viterbi training) and VB-VT that
extends VT with variational Bayes. We also enabled PRISM to calculate an infinite sum of probabilities through solving probability equations, which is applied to intention recognition of users from web log session data.

  • Research Products

    (9 results)

All 2014 2013 2012 2011

All Journal Article (4 results) (of which Peer Reviewed: 4 results) Presentation (5 results)

  • [Journal Article] アクセスログ分における接頭部分列からのプラン認識2014

    • Author(s)
      小島諒介, 佐藤泰介
    • Journal Title

      人工知能学会論文誌

      Volume: Vol.29,No.3 Pages: 301-310

    • Peer Reviewed
  • [Journal Article] Viterbi training in PRISM2014

    • Author(s)
      Sato, T . and Kubota, K
    • Journal Title

      Theory and Practice of Logic Programming

      Pages: 1-22

    • DOI

      10.1017/S1471068413000677

    • Peer Reviewed
  • [Journal Article] 命題化確率計算に基づく MCMC ベイズ推定2013

    • Author(s)
      石畠正和, 佐藤泰介
    • Journal Title

      人工知能学会論文誌

      Volume: Vol.28,No.2 Pages: 230-242

    • Peer Reviewed
  • [Journal Article] Infinite probability computation by cyclic explanation graphs2013

    • Author(s)
      Sato, T. and Meyer, P
    • Journal Title

      Theory and Practice of Logic Programming

      Pages: 1-29

    • DOI

      10.1017/S1471068413000562

    • Peer Reviewed
  • [Presentation] RP-growth : Top-k mining of relevant patterns with minimum support raising2014

    • Author(s)
      Kameya, Y. and Sato, T
    • Organizer
      Proceedings of the 2012 SIAM International Conference on Data Mining (SDM-2012)
    • Place of Presentation
      Anaheim, California, USA
    • Year and Date
      2014-04-26
  • [Presentation] Logic-based Approach to Generatively Defined Discriminative Modeling2013

    • Author(s)
      Sato, T., Kubota, K. and Kameya, Y
    • Organizer
      Proceedings of the 23rd International Conference on Inductive Logic Programming(ILP 2013)
    • Place of Presentation
      Rio de Janeiro, Brazil
    • Year and Date
      2013-08-29
  • [Presentation] Tabling for infinite probability computation2012

    • Author(s)
      Sato, T. and Meyer, P
    • Organizer
      The 28th International Conference on Logic Programming, (ICLP-2012)Technical Communications
    • Place of Presentation
      Technical Communications, Budapest, Hungary
    • Year and Date
      2012-09-07
  • [Presentation] Compiling Bayesian Networks for Parameter Learning based on Shared BDDs2011

    • Author(s)
      Ishihata, M., Sato, T. and Minato, S
    • Organizer
      Proceedings of the 24th Australasian Joint Conference on Artificial Intelligence (AI-2011)
    • Place of Presentation
      Western Australia, Australia(LNAI 7106, Springer, pp.203-212)
    • Year and Date
      2011-12-08
  • [Presentation] Bayesian inference for statistical abduction using Markov chain Monte Carlo2011

    • Author(s)
      Ishihata, M. and Sato, T
    • Organizer
      Proceedings of the 3rd Asian Conference on Machine Learning (ACML-2011), JMLR Workshop and Conference Proceedings, Vol.20, pp.81-96
    • Place of Presentation
      Taoyuan, Taiwan
    • Year and Date
      2011-11-14

URL: 

Published: 2015-06-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi