• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Geometry and arithmetic of period integrals and motives

Research Project

  • PDF
Project/Area Number 23340001
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionThe University of Tokyo

Principal Investigator

TERASOMA Tomohide  東京大学, 数理(科)学研究科(研究院), 教授 (50192654)

Co-Investigator(Kenkyū-buntansha) HANAMURA Masaki  東北大学, 理学研究科, 教授 (60189587)
KIMURA Kenichirou  筑波大学, 数理物質科学研究科, 講師 (60189587)
MATSUMOTO Keiji  北海道大学, 理学研究科, 教授 (60189587)
SHIHO Atsushi  東京大学, 数理科学研究科, 教授 (60189587)
Project Period (FY) 2011-04-01 – 2015-03-31
Keywordsモチーフ / 周期積分 / 代数的サイクル / コホモロジー
Outline of Final Research Achievements

We construct a complex using semi-algebraic set and prove generalized Cauchy formula to construct a Hodge realization functor of mixed Tate motives.
We introduce a motivic filtration which gives a depth filtration. We construct surfaces which have big images of cycle maps from higher Chow groups to cohomologies.
We study Schwarz maps for reducible hypergeometric systems of two variable with a special parameter. We describe the inverse period map using theta function. We give a description of the image of Abel-Jacobi map corresponding to a family of genus two curves.

Free Research Field

代数幾何

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi