2014 Fiscal Year Final Research Report
Geometry and arithmetic of period integrals and motives
Project/Area Number |
23340001
|
Research Category |
Grant-in-Aid for Scientific Research (B)
|
Allocation Type | Single-year Grants |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | The University of Tokyo |
Principal Investigator |
TERASOMA Tomohide 東京大学, 数理(科)学研究科(研究院), 教授 (50192654)
|
Co-Investigator(Kenkyū-buntansha) |
HANAMURA Masaki 東北大学, 理学研究科, 教授 (60189587)
KIMURA Kenichirou 筑波大学, 数理物質科学研究科, 講師 (60189587)
MATSUMOTO Keiji 北海道大学, 理学研究科, 教授 (60189587)
SHIHO Atsushi 東京大学, 数理科学研究科, 教授 (60189587)
|
Project Period (FY) |
2011-04-01 – 2015-03-31
|
Keywords | モチーフ / 周期積分 / 代数的サイクル / コホモロジー |
Outline of Final Research Achievements |
We construct a complex using semi-algebraic set and prove generalized Cauchy formula to construct a Hodge realization functor of mixed Tate motives. We introduce a motivic filtration which gives a depth filtration. We construct surfaces which have big images of cycle maps from higher Chow groups to cohomologies. We study Schwarz maps for reducible hypergeometric systems of two variable with a special parameter. We describe the inverse period map using theta function. We give a description of the image of Abel-Jacobi map corresponding to a family of genus two curves.
|
Free Research Field |
代数幾何
|