• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Recent development of special functions from the viewpoint of the representation theory and the integrals in complex variables

Research Project

  • PDF
Project/Area Number 23340002
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Algebra
Research InstitutionOsaka University (2014-2015)
Tokyo Institute of Technology (2011-2013)

Principal Investigator

MIMACHI KATSUHISA  大阪大学, 情報科学研究科, 教授 (40211594)

Co-Investigator(Renkei-kenkyūsha) YOSHIDA MASAAKI  九州大学, 名誉教授 (30030787)
KUROKAWA NOBUSHIGE  東京工業大学, 大学院理工学研究科, 教授 (70114866)
TAKATA TOSHIE  九州大学, 大学院数理学研究院, 准教授 (40253398)
Project Period (FY) 2011-04-01 – 2016-03-31
Keywords超幾何函数 / 超幾何積分 / 複素積分 / モノドロミー / 既約性 / ねじれホモロジー / フックス型微分方程式 / 接続問題
Outline of Final Research Achievements

We calculated explicitly the circuit matrices associated with Gauss' {}_2F1, the generalized hypergeometric functions {}_{n+1}F_n, Apell's F_1, F_2, F_3, Jordan-Pochhammer F_{JP}, and Lauricella's F_D, and, by using them, we determine the conditions that the corresponding (system of) diffferential equations being irreducible. On the other hand, in the cases of F_2, F_3, F_4, we study the contiguity relations and give the conditions that the corresponding systems being reducible.

We prove that, in each case of the classical hypergeometric equations and Gelfand's hypergeometric system on the space of point configurations, the integral of a multivalued functions over any cycle satisfies the system of differential equations. Here the classical hypergeometric equations mean the equations satisfied by Appell's F_1, F_2, F_3, F_4, Lauricella's F_D, F_A, F_B, F_C, and the generalized hypergeometric function {}_{n+1}F_n.

Free Research Field

代数解析

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi