• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Harmonic analysis by real variable methods and its applications

Research Project

  • PDF
Project/Area Number 23340034
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypeSingle-year Grants
Section一般
Research Field Basic analysis
Research InstitutionTokyo Woman's Christian University

Principal Investigator

MIYACHI Akihiko  東京女子大学, 現代教養学部, 教授 (60107696)

Co-Investigator(Kenkyū-buntansha) OKADA Masami  首都大学東京, 理工学研究科, 教授 (00152314)
FURUYA Yasuo  東海大学, 理学部, 教授 (70234903)
KIKUCHI Masato  富山大学, 大学院理工学研究部(理学), 教授 (20204836)
TANAKA Hitoshi  東京大学, 大学院数理科学研究科, 特任助教 (70422392)
TOMITA Naohito  大阪大学, 理学研究科, 准教授 (10437337)
SAWANO Yoshihiro  首都大学東京, 理工学研究科, 准教授 (40532635)
NAKAI Eiichi  茨城大学, 理学部, 教授 (60259900)
TSUTSUI Yohei  東京大学, 大学院数理科学研究科, 特任助教 (40722773)
Co-Investigator(Renkei-kenkyūsha) SATO Shuichi  金沢大学, 教育学部, 准教授 (20162430)
KOBAYASHI Masaharu  山形大学, 理学部, 准教授 (30516480)
TACHIZAWA Kazuya  北海道大学, 大学院理学研究院, 准教授 (80227090)
Project Period (FY) 2011-04-01 – 2015-03-31
Keywords特異積分 / 擬微分作用素 / フーリエ乗子 / 最大作用素 / 双線形作用素 / ハーディ空間 / パラプロダクト
Outline of Final Research Achievements

Using product type Sobolev norm, we determined the critical differentiability orders in the Hormander-Mihlin type conditions for bilinear Fourier multiplier operators. We generalized the Calderon-Vaillancourt theorem for linear pseudo-differential operators to the case of bilinear pseudo-differential operators. We obtained several new estimates for various operators of harmonic analysis in various function spaces.

Free Research Field

調和解析学

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi