• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2013 Fiscal Year Final Research Report

Robust training based on combined online/batch training techniques

Research Project

  • PDF
Project/Area Number 23500189
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Intelligent informatics
Research InstitutionShonan Institute of Technology

Principal Investigator

HIROSHI Ninomiya  湘南工科大学, 工学部, 教授 (60308335)

Co-Investigator(Renkei-kenkyūsha) KOBAYASHI Manabu  湘南工科大学, 工学部, 教授 (80308204)
Project Period (FY) 2011 – 2013
Keywordsニューラルネットワーク / 学習アルゴリズム / 準ニュートン法 / オンライン学習 / バッチ学習 / 並列アルゴリズム
Research Abstract

In this research, it is a purpose to enable the approximation model by the feedforward neural networks for the function or the system with the highly nonlinear behavior by the following studies. Specifically, "Proposal of a novel training algorithm using combined online/batch quasi-Newton techniques", and "Analysis on the robustness of the proposed algorithm". Here, robustness in this research means that the proposed algorithm has strong ability to search a global minimum without being trapped into local minimum. Furthermore, this approach is useful for the circuit modeling for the design and optimization, where analytical formulas are not available or original model is computationally too expensive. A neural model is trained once, and can be used again and again. This avoids repetitive circuit simulations where a change in the physical dimension requires a re-simulation of the circuit structure.

  • Research Products

    (17 results)

All 2014 2013 2012 2011 Other

All Journal Article (9 results) (of which Peer Reviewed: 9 results) Presentation (7 results) Remarks (1 results)

  • [Journal Article] Reconfigurable Circuit Design based on Arithmetic Logic Unit Using Double-Gate CNTFETs2014

    • Author(s)
      Ninomiya, H., Kobayashi, M., Miura, Y . and Watanabe S
    • Journal Title

      IEICE Trans. on Fundamentals

      Volume: vol.E97-A,no.2 Pages: 675-678

    • Peer Reviewed
  • [Journal Article] Reduced Reconfigurable Logic Circuit Design based on Double Gate CNTFETs using Ambipolar Binary Decision Diagram2013

    • Author(s)
      Ninomiya, H., Kobayashi, M. and Watanabe S
    • Journal Title

      IEICE Trans. on Fundamentals

      Volume: vol.E96-A,no.1 Pages: 356-359

    • Peer Reviewed
  • [Journal Article] A Linear Time ADMM Decoding for LDPC Codes over MIMO Channels2013

    • Author(s)
      Kobayashi, M., Ninomiya, H., Matsushima, T ., and Hirasawa, S
    • Journal Title

      Proc. 2013 RISP International Workshop on Nonlinear Circuits, Communications and Signal Processing (NCSP'13)

      Pages: 185-188

    • Peer Reviewed
  • [Journal Article] Dynamic Sample Size Selection based quasi-Newton Training for Highly Nonlinear Function Approximation using Multilayer Neural Networks2013

    • Author(s)
      Ninomiya, H
    • Journal Title

      Proc. IEEE&INNS/IJCNN'13

      Pages: 1932-1937

    • Peer Reviewed
  • [Journal Article] パラメータ化オンライン準ニュートン法による階層型ニューラルネットワークの学習2012

    • Author(s)
      二宮 洋
    • Journal Title

      信学論 A

      Volume: vol.J95-A,no.8 Pages: 698-703

    • Peer Reviewed
  • [Journal Article] 階層型ニューラルネットワークの学習に対する online/batch ハイブリッド型準ニュー トン法の有効性に関する研究2012

    • Author(s)
      阿倍俊和, 坂下善彦, 二宮 洋
    • Journal Title

      Journal of Signal Processing

      Volume: vol.16,no.5 Pages: 451-458

    • Peer Reviewed
  • [Journal Article] An Error Probability Estimation of the Document Classification Using Markov Model2012

    • Author(s)
      Kobayashi, M., Ninomiya, H., Matsushima, T ., and Hirasawa, S
    • Journal Title

      Proc. 2012 International Symposium on Information Theory and its Applications (ISITA'12)

      Pages: 712-716

    • Peer Reviewed
  • [Journal Article] Parameterized Online quasi-Newton Training for High-Nonlinearity Function Approximation using Multilayer Neural Networks2011

    • Author(s)
      Ninomiya, H
    • Journal Title

      Proc. IEEE&INNS/IJCNN'11

      Pages: 2770-2777

    • Peer Reviewed
  • [Journal Article] Microwave Neural Network Models Using Improved Online quasi-Newton Training Algorithm2011

    • Author(s)
      Ninomiya, H
    • Journal Title

      Journal of Signal Processing

      Volume: vol.15,no.6 Pages: 483-488

    • Peer Reviewed
  • [Presentation] 改良型分散準ニュートン法によるニューラルネットワークの学習2013

    • Author(s)
      佐伯 誠, 坂下善彦, 二宮 洋
    • Organizer
      電子情報通信学会 基礎・境界ソサイエティ大会
    • Year and Date
      20130900
  • [Presentation] 動的サンプルサイズ選択法に基づく準ニュートン法による階層型ニューラルネットワークの学習2013

    • Author(s)
      二宮 洋
    • Organizer
      電子情報通信学会 信学技報 非線形問題研究会
    • Year and Date
      20130700
  • [Presentation] Dynamic Sample Size Selection in Improved Online quasi-Newton Method for Robust Training of Feedforward Neural Networks2013

    • Author(s)
      Ninomiya, H
    • Organizer
      The Fifth International Conference on Advanced Cognitive T echnologies and Applications (COGNITIVE2013)
    • Year and Date
      20130500
  • [Presentation] 分散並列環境における準ニュートン学習アルゴリズムの有効性2013

    • Author(s)
      佐伯 誠, 坂下善彦, 二宮 洋
    • Organizer
      電子情報通信学会信学技報 非線形問題研究会
    • Year and Date
      20130100
  • [Presentation] MIMO 通信における相互情報量基準に基づく量子化器の設計法2012

    • Author(s)
      小林 学, 八木秀樹, 二宮 洋, 平澤茂一
    • Organizer
      電子情報通信学会 情報理論研究会 信学技報
    • Year and Date
      20120900
  • [Presentation] Online/Batch ハイブリット型準ニュートン法によるニューラルネットワークの学習アルゴリズム2012

    • Author(s)
      阿部俊和, 坂下善彦 , 二宮洋
    • Organizer
      情報処理学会第74回全国大会
    • Year and Date
      20120300
  • [Presentation] online/batch ハイブリッド型準ニュートン法による階層型ニューラルネットワークのロバスト学習に関する研究2011

    • Author(s)
      阿部俊和, 坂下善彦 , 二宮洋
    • Organizer
      電子情報通信学会 非線形問題研究会信学技報
    • Year and Date
      20111100
  • [Remarks]

    • URL

      http://www.info.shonan-it.ac.jp/ninomiya-lab/ninomiya.html

URL: 

Published: 2015-07-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi