• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2013 Fiscal Year Final Research Report

Representation theory and combinatorics of classical groups, quantum groups and Hecke algebras

Research Project

  • PDF
Project/Area Number 23540008
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionThe University of Tokyo

Principal Investigator

TERADA Itaru  東京大学, 数理(科)学研究科(研究院), 准教授 (70180081)

Co-Investigator(Kenkyū-buntansha) OKADA Soichi  名古屋大学, 大学院・多元数理科学研究科, 教授 (20224016)
Project Period (FY) 2011 – 2013
Keywordsリトルウッド・リチャードソン盤 / ヤング図形 / 組合せ論 / 全単射 / 対合性 / ロビンソン・シェンステッド対応 / 旗多様体 / ハイブ
Research Abstract

Littlewood-Richardson coefficients, which are the coefficients of products of Schur functions expanded as sums of Schur functions, are described as the numbers of combinatorial objects called Littlewood-Richardson tableaux.
For the bijection between Littlewood-Richardson tableaux given by Azenhas, which realizes the symmetry of Littlewood-Richardson coefficients reflecting the commutativity of Schur dunctions, is given two combinatorial proofs, by collaboration with King and Azenhas, one of which using the conventional Littlewood-Richardson tableaux and the other using new combinatorial objects called hives which have been introduced by Knutson and Tao rather recently.

  • Research Products

    (1 results)

All 2013

All Journal Article (1 results)

  • [Journal Article] ヤング図形から表現論をさぐる2013

    • Author(s)
      寺田 至
    • Journal Title

      数理科学

      Volume: 51巻 Pages: 32-33

URL: 

Published: 2015-07-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi