2014 Fiscal Year Final Research Report
Modular representations of algebraic groups
Project/Area Number |
23540023
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Osaka City University |
Principal Investigator |
KANEDA masaharu 大阪市立大学, 大学院・理学研究科, 教授 (60204575)
|
Co-Investigator(Renkei-kenkyūsha) |
TANISAKI Toshiyuki 大阪市立大学, 大学院理学研究科, 教授 (70142916)
YAGITA Nobuaki 茨城大学, 教育学部, 教授 (20130768)
TEZUKA Michishige 琉球大学, 理学部, 教授 (20197784)
FURUSAWA Masaaki 大阪市立大学, 大学院理学研究科, 教授 (50294525)
HASHIMOTO Yoshitake 東京都市大学, 知識工学部, 教授 (20271182)
KAWATA Shigeto 大阪市立大学, 大学院理学研究科, 准教授 (50195103)
|
Project Period (FY) |
2011-04-28 – 2015-03-31
|
Keywords | 代数群 / modular表現 / Frobenius kernel / 量子群 / flag variety / cohomology |
Outline of Final Research Achievements |
Let G be a reductive algebraic group over an algebraically closed field of positive characteristic p, P a parabolic subgroup of G, and T a maximal torus of P, G_1 the Frobenius kernel of G. In joint work with Abe Noriyuki we determined the G_1T-structure of G_1P-Verma modules of p-regular highest weights for large p. In joint work with H.H. Andersen we determined the cohomology vanishing behavior of line bundles on G/B in type G_2 when the corresponding B-modules lie in the lowest p^2-alcoves. In join work with M. Gros we constructed a Frobenius splitting on a quantum group at a root of unity.
|
Free Research Field |
群論
|