• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Annual Research Report

岩堀ヘッケ環および鏡映群の表現論

Research Project

Project/Area Number 23540026
Research InstitutionSophia University

Principal Investigator

五味 靖  上智大学, 理工学部, 准教授 (50276515)

Co-Investigator(Kenkyū-buntansha) 筱田 健一  上智大学, 理工学部, 教授 (20053712) [Withdrawn]
中島 俊樹  上智大学, 理工学部, 教授 (60243193)
Project Period (FY) 2011-04-28 – 2016-03-31
Keywords岩堀ヘッケ環 / 鏡映群 / マルコフトレース / ガウス和 / ストリングC群
Outline of Annual Research Achievements

五味-前田-筱田は,通常のガウス和の拡張として,一般の有限群上のガウス和を定義し,すべての有限コクセター群及び複素鏡映群G(m,p,n)上のガウス和の値を決定した。
この先行研究を踏まえて,本研究課題では,ガウス和のq類似について研究し,対称群上のガウス和のq類似としてA型岩堀ヘッケ環上のガウス和の定義を与え,その値を決定した。さらにこのガウス和に対応する岩堀ヘッケ環上のトレース関数がマルコフトレースと深い関係を持つことを発見した。この結果は最終年度以前に得られたものである。
最終年度では他の型,特にB型のガウス和を研究したが,思うような成果は上がらなかった。そこで,視野を広げるべく,コクセター群の拡張であるストリングC群の研究を行った。ストリングC群とはコクセター群の商群であって,放物型部分群の共通部分が放物型部分群になるという条件を満たすもののことである。すべてのコクセター群がストリングC群であることは周知の事実である。また,ストリングC群は抽象的多面体の自己同型群としての特徴付けを持つ。ストリングC群の分類問題は共通部分条件の困難さによって非常に難しい問題となっているが,本研究において,特に2群であるストリングC群に絞って,その分類の問題に取り組んだ。その結果,ランクが3の場合においては,すべての2群であるストリングC群は位数が半分のストリングC群から中心拡大によって構成されることを証明した。この結果と各クラスの普遍ストリングC群の商群を考えることによって,位数が2^10の場合のストリングC群の分類を決定した。

  • Research Products

    (7 results)

All 2016 2015

All Journal Article (3 results) (of which Peer Reviewed: 3 results,  Acknowledgement Compliant: 1 results) Presentation (4 results) (of which Int'l Joint Research: 3 results,  Invited: 4 results)

  • [Journal Article] Gauss sums on the Iwahori-Hecke algebras of type $A$2016

    • Author(s)
      Y. Gomi
    • Journal Title

      Tokyo J.Math.

      Volume: 39 Pages: -

    • Peer Reviewed / Acknowledgement Compliant
  • [Journal Article] Explicit forms of cluster variables on double Bruhat cells $G^{u,e}$ of type C2016

    • Author(s)
      Y.Kanakubo and T.Nakashima
    • Journal Title

      Tokyo J.Math.

      Volume: 39 Pages: -

    • Peer Reviewed
  • [Journal Article] Cluster Variables on Certain Double Bruhat Cells of Type $(u,e)$ and Monomial Realizations of Crystal Bases of Type A2015

    • Author(s)
      Y.Kanakubo and T.Nakashima
    • Journal Title

      SIGMA(Symmetry Integrability Geom. Methods Appl.)

      Volume: 11 Pages: 033, 32pages

    • Peer Reviewed
  • [Presentation] Gauss sums on the Iwahori-Hecke algebras of type $A$2016

    • Author(s)
      五味 靖
    • Organizer
      研究集会「Tokyo Journal of Mathematics 筱田記念号刊行に寄せて」
    • Place of Presentation
      上智大学 (東京都・千代田区)
    • Year and Date
      2016-03-22
    • Invited
  • [Presentation] Determination of string C-Groups of order 10242016

    • Author(s)
      Y. Gomi
    • Organizer
      Discrete Mathematics and Applications
    • Place of Presentation
      University of the Philippines Diliman (Philippines)
    • Year and Date
      2016-01-09
    • Int'l Joint Research / Invited
  • [Presentation] Polyhedral Realizations of Crystal Bases2015

    • Author(s)
      T. Nakashima
    • Organizer
      8th South Eastern Lie Theory Workshop on Algebraic and Combinatiroal Representaion Theory, Discussion Sessions
    • Place of Presentation
      North Carolina State University (USA)
    • Year and Date
      2015-10-10
    • Int'l Joint Research / Invited
  • [Presentation] Affine Geometric Crystals and Limit of KR Perfect Crystals of $A^{(1)}_n$2015

    • Author(s)
      T. Nakashima
    • Organizer
      8th South Eastern Lie Theory Workshop on Algebraic and Combinatiroal Representaion Theory
    • Place of Presentation
      North Carolina State University (USA)
    • Year and Date
      2015-10-09
    • Int'l Joint Research / Invited

URL: 

Published: 2017-01-06  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi