• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Representation theory of Iwahori-Hecke algebras and reflection groups

Research Project

  • PDF
Project/Area Number 23540026
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionSophia University

Principal Investigator

Gomi Yasushi  上智大学, 理工学部, 准教授 (50276515)

Co-Investigator(Kenkyū-buntansha) NAKASHIMA Toshiki  上智大学, 理工学部, 教授 (60243193)
SHINODA Ken-ichi  上智大学, 理工学部, 教授 (20053712)
Research Collaborator Ma. Louise Antonette N. De Las Penas  Ateneo de Manila University
Loyola Mark L.  Ateneo de Manila University
Project Period (FY) 2011-04-28 – 2016-03-31
Keywords岩堀ヘッケ環 / マルコフトレース / 鏡映群 / ガウス和 / ストリングC群
Outline of Final Research Achievements

I studied q-analogues of Gauss sums on finite Coxeter groups which are generalization of classical Gauss sums. Then I gave the definition of Gauss sums on the Iwahori-Hecke algebras of type A and determined the values. Furthermore, I found that the corresponding trace functions on Iwahori-Hecke algebras are closely related to the Markov trace, and determined the values of the trace functions.
In addition, I studied the classification of string C-groups which are generalization of Coxeter groups. I focused into 2-groups, and I proved that in case of rank 3, all string C-groups are obtained as central extensions of string C-groups by 2. Using this theorem, I determined all string C-groups of order 1024.

Free Research Field

代数学

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi