2013 Fiscal Year Final Research Report
The geometry of the mapping class group action on the character variety of surface groups
Project/Area Number |
23540088
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Geometry
|
Research Institution | Nara Women's University |
Principal Investigator |
|
Project Period (FY) |
2011 – 2013
|
Keywords | 位相幾何 / 双曲幾何 |
Research Abstract |
We studied the SL(2,C)-character variety of once punctured torus. In particular, we investigate the relation between the Q-condition due to Bowditch, the discreteness of the corresponding representation, the complexity of the dynamics of the mapping class group action on the character variety. We published a joint paper with Yohei Komori on the global structure of the discreteness loci of the linear slices of the character variety. We carried our a computer experiments on primitive stableness, which was introduced recently by Minsky and measures the complexity of the dynamics of the mapping class group action, and compared our results with Q-condition.
|
Research Products
(20 results)