2013 Fiscal Year Final Research Report
Spectrum of Schroedinger operators with periodic or random magnetic fields
Project/Area Number |
23540212
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Basic analysis
|
Research Institution | Ehime University |
Principal Investigator |
NOMURA YUJI 愛媛大学, 理工学研究科, 准教授 (40282818)
|
Co-Investigator(Renkei-kenkyūsha) |
ITOH Hiroshi 愛媛大学, 大学院・理工学研究科, 教授 (90243005)
MINE Takuya 京都工芸繊維大学, 工芸科学研究科, 准教授 (90378597)
|
Project Period (FY) |
2011 – 2013
|
Keywords | シュレーディンガー作用素 / スペクトル |
Research Abstract |
We consider the magnetic Schroedinger operators on the Poincare upper half plane with constant Gaussian curvature -1. We assume the magnetic fields is given by the sum of a constant field and the Dirac delta measures placed on some lattice. We give a sufficient condition for each Landau level to be an infinitely degenerated eigenvalue. We also prove the lowest Landau level is not an eigenvalue if the above condition fails.
|
Research Products
(9 results)