• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

MEROMORPHIC CONVEXITY AND STEINNESS FOR COMPLEX SPACES

Research Project

  • PDF
Project/Area Number 23540217
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionHiroshima University

Principal Investigator

ABE MAKOTO  広島大学, 理学(系)研究科(研究院), 教授 (90159442)

Co-Investigator(Renkei-kenkyūsha) SHIMA Tadashi  広島大学, 大学院工学研究院, 准教授 (30226196)
HAMANO Sachiko  福島大学, 人間発達文化学類, 准教授 (10469588)
Project Period (FY) 2011-04-28 – 2015-03-31
Keywords複素空間 / シュタイン空間 / シュタイン多様体 / 有理型凸性
Outline of Final Research Achievements

A Stein space is a mathematical object on which there exist sufficiently many holomorphic functions. A pseudoconvex domain in the space of the n-tuples of compex numbers is a typical example of a Stein space. In this course of studies, related to the meromorphic convexity and Steinness for complex spaces, some new results are obtained on the extra zeros of Cartier divisors in a Stein space, on the Steinness or the local Steinness of domains in a Stein orbifold, and on the strong disk property for domains in an open planar Riemann surface.

Free Research Field

数物系科学

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi