• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2013 Fiscal Year Final Research Report

Inverse scattering problems for singular rank-one perturbations of a selfadjoint operator

Research Project

  • PDF
Project/Area Number 23540219
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionTokyo Metropolitan University

Principal Investigator

YOSHITOMI Kazushi  首都大学東京, 理工学研究科, 准教授 (40304729)

Project Period (FY) 2011 – 2013
Keywords散乱逆問題 / 自己共役作用素 / 特異ランク1摂動
Research Abstract

One of the most important problems in the scattering theory is the characterization of the scattering matrices. This investigation studies forward and inverse scattering problems for singular rank-one perturbations of a selfadjoint operator A. I obtain necessary and sufficient conditions for a function to be the phase shift of a singular rank-one perturbation of A. This result is closely related with the theory of point interactions.

  • Research Products

    (4 results)

All 2013 2012

All Journal Article (2 results) Presentation (2 results)

  • [Journal Article] Inverse scattering problems for singular rank-one perturbations of a selfadjoint operator2012

    • Author(s)
      Kazushi Yoshitomi
    • Journal Title

      Asymptotic Analysis

      Volume: 80 Pages: 213-221

  • [Journal Article] A remark on double singular integrals2012

    • Author(s)
      Kazushi Yoshitomi
    • Journal Title

      Kyushu Journal of Mathematics

      Volume: 66 Pages: 429-433

  • [Presentation] A uniform coerciveness result for biharmonic operator and its application to a parabolic equation2013

    • Author(s)
      吉冨和志
    • Organizer
      数理工学数学談話会
    • Place of Presentation
      大阪府立大学
    • Year and Date
      2013-12-06
  • [Presentation] A uniform coerciveness result for biharmonic operator and its application to a parabolic equation2013

    • Author(s)
      吉冨和志
    • Organizer
      月曜解析セミナー
    • Place of Presentation
      北海道大学
    • Year and Date
      2013-10-28

URL: 

Published: 2015-07-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi