• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2013 Fiscal Year Final Research Report

Studies on preconditioning and basis functions in periodic fast multipole methods for Maxwell's equations

Research Project

  • PDF
Project/Area Number 23560068
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Engineering fundamentals
Research InstitutionKyoto University

Principal Investigator

NISHIMURA Naoshi  京都大学, 情報学研究科, 教授 (90127118)

Co-Investigator(Kenkyū-buntansha) YOSHIKAWA Hitoshi  京都大学, 情報学研究科, 講師 (90359836)
Project Period (FY) 2011 – 2013
KeywordsMaxwell方程式 / 周期境界値問題 / 高速多重極法 / 前処理法 / 基底関数
Research Abstract

This study aims at further accelerating the periodic FMM, which is a fast method for solving electromagnetic scattering problems for periodic structures, by improving preconditioners for linear equations, basis functions and integral equation formulations. The square of certain integral operators in electromagnetic scattering problems are well-conditioned, and so are their numerical counterparts as one uses the right basis functions. We were able to obtain an efficient solver of periodic scattering problems using this idea. We also investigated other well-conditioned integral equation formulations and developed a solution method for almost periodic structures found in photonic crystal applications, as well as an efficient preconditioner for volume integral equations.

  • Research Products

    (8 results)

All 2014 2013 2012

All Journal Article (4 results) Presentation (4 results)

  • [Journal Article] Preconditioning of periodic fast multipole method for solving volume integral equations2014

    • Author(s)
      R. Misawa, N. Nishimura and MS. Tong
    • Journal Title

      IEEE Trans. Antennas and Propagation

      Volume: (accepted)

  • [Journal Article] 殆ど周期的な構造におけるHelmholtz方程式の境界値問題の解法の改良について2013

    • Author(s)
      森田樹一郎,西村直志
    • Journal Title

      計算数理工学論文集

      Volume: vol.13 Pages: 43-48

    • URL

      http://gspsun1.gee.kyoto-u.ac.jp/JASCOME/denshi-journal/13/JA138.pdf

  • [Journal Article] 2次元Helmholtz方程式の1周期transmission問題における境界積分方程式の定式化について2012

    • Author(s)
      三澤亮太,西村直志
    • Journal Title

      計算数理工学論文集

      Volume: vol.12 Pages: 109-114

    • URL

      http://gspsun1.gee.kyoto-u.ac.jp/JASCOME/denshi-journal/12/JA1219.pdf

  • [Journal Article] Calderon preconditioning approaches for PMCHWT formulations for Maxwell's equations2012

    • Author(s)
      K. Niino and N. Nishimura
    • Journal Title

      International Journal of Numerical Modelling : Electronic Networks, Devices and Fields

      Volume: vol.25 Pages: 558-572

    • DOI

      10.1002/jnm.1834

  • [Presentation] Solution of scattering problems for Helmholtz'equation in domains with disturbed periodicity2013

    • Author(s)
      N. Nishimura
    • Organizer
      Integral equation methods : fast algorithms and applications
    • Place of Presentation
      Banff international research station, Canada
    • Year and Date
      2013-12-09
  • [Presentation] Recent developments of periodic FMM in Helmholtz'and Maxwell's equations2012

    • Author(s)
      N. Nishimura
    • Organizer
      ICOME 2012
    • Place of Presentation
      Kyoto, Japan
    • Year and Date
      2012-12-14
  • [Presentation] Calderon preconditioners for transmission problems in elasticity and Maxwell's equations2012

    • Author(s)
      N. Nishimura
    • Organizer
      4^<th> workshop on the BEM
    • Place of Presentation
      Saarland University, Saarbrücken, Germany
    • Year and Date
      2012-05-16
  • [Presentation] Calderon preconditioners for boundary integral equations in time harmonic wave problems2012

    • Author(s)
      N. Nishimura
    • Organizer
      NSF workshop on the BEM
    • Place of Presentation
      University of Minnesota, Minneapolis, USA
    • Year and Date
      2012-04-26

URL: 

Published: 2015-07-16  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi