• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2012 Fiscal Year Final Research Report

New approaches for the analysis ofcomplex time-series using kernel methods.

Research Project

  • PDF
Project/Area Number 23700172
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Intelligent informatics
Research InstitutionKyoto University

Principal Investigator

CUTURI Marco  京都大学, 情報学研究科, 准教授 (80597344)

Project Period (FY) 2011 – 2012
KeywordsMachine Learning / Kernel Methods
Research Abstract

Time series are now increasingly complex. Each observation may describe a structured object (an image or a graph for instance) or alternatively a very high dimensional feature vector. The goal of our project is to develop new methods to handle time-series of complex data through kernel methods and optimization methods.

  • Research Products

    (5 results)

All 2013 Other

All Journal Article (2 results) Presentation (1 results) Remarks (2 results)

  • [Journal Article] Mean Reversion with a Variance Threshold2013

    • Author(s)
      M. Cuturi, A. d'Aspremont
    • Journal Title

      JMLR W&CP

      Volume: 28(3) Pages: 271-279

  • [Journal Article] Autoregressive Kernels for Time Series

    • Author(s)
      M. Cuturi, A.Doucet
    • Journal Title

      Journal of Machine Learning Research

  • [Presentation] Fast Global Alignment Kernels

    • Author(s)
      M. Cuturi
    • Organizer
      Proceedings of the International Conference on Machine Learning 2011
  • [Remarks]

    • URL

      http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/GA.html

  • [Remarks]

    • URL

      http://www.iip.ist.i.kyoto-u.ac.jp/member/cuturi/AR.html

URL: 

Published: 2014-08-29   Modified: 2014-10-07  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi