• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2012 Fiscal Year Final Research Report

Development of a Kansei data mining system based on random rough sets

Research Project

  • PDF
Project/Area Number 23700244
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field Sensitivity informatics/Soft computing
Research InstitutionMuroran Institute of Technology

Principal Investigator

KUDO Yasuo  室蘭工業大学, 工学研究科, 准教授 (90360966)

Project Period (FY) 2011 – 2012
Keywordsあいまいと感性
Research Abstract

In this study, we proposed a random rough set model by introducing a concept of ensemble learning to rough sets. We also developed a Kansei data mining system based on the random rough set model and evaluated the developed system by experiments. Consequently, our study contributed the development of essential basis of rough set-based data mining for Kansei data with many samples and attributes.

  • Research Products

    (9 results)

All 2013 2012 2011

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (7 results)

  • [Journal Article] A Parallel Computation Method for Heuristic Attribute Reduction Using Reduced Decision Tables2013

    • Author(s)
      Yasuo Kudo and Tetsuya Murai
    • Journal Title

      JACIII

      Volume: Vol.17, No.3 Pages: 371-376

    • Peer Reviewed
  • [Journal Article] A Revised Approach to Solving the Symbolic Value Partition Problem from a Viewpoint of Roughness of Partitions2012

    • Author(s)
      Yasuo Kudo
    • Journal Title

      Int. J. Reasoning-based Intelligent Systems

      Volume: Vol.4, No.5 Pages: 129-139

    • Peer Reviewed
  • [Presentation] An Attempt of Hybridization of Generalized Dynamic Reducts and A Heuristic Attribute Reduction Using Reduced Decision Tables2013

    • Author(s)
      Yasuo Kudo and Tetsuya Murai
    • Organizer
      FUZZ-IEEE 2013
    • Place of Presentation
      ハイデラバード(インド)
    • Year and Date
      20130708-10
  • [Presentation] Multidimensional Service Weight Sequence Mining based on Cloud Service Utilization in Jyaguchi2013

    • Author(s)
      S. K. Shrestha, Y. Kudo, B. P. Gautam, and D. Shrestha
    • Organizer
      IMECS 2013
    • Place of Presentation
      香港(中国)
    • Year and Date
      20130313-15
  • [Presentation] ラフ集合および統計的手法に基づく大規模データからの縮約抽出について2012

    • Author(s)
      工藤康生,村井哲也
    • Organizer
      第28回ファジィシステムシンポジウム
    • Place of Presentation
      名古屋(日本)
    • Year and Date
      20120912-14
  • [Presentation] A Parallel Computation Method of Attribute Reduction2012

    • Author(s)
      Yasuo Kudo and Tetsuya Murai
    • Organizer
      ISCIIA 2012
    • Place of Presentation
      札幌(日本)
    • Year and Date
      20120820-23
  • [Presentation] Indiscernibility Relations by Interrelationships between Attributes in Rough Set Data Analysis2012

    • Author(s)
      Yasuo Kudo and Tetsuya Murai
    • Organizer
      IEEE GrC 2012
    • Place of Presentation
      杭州(中国)
    • Year and Date
      20120811-13
  • [Presentation] ラフ集合におけるヒューリスティックな縮約計算の並列化の試み2012

    • Author(s)
      工藤康生,岡田隆生,村井哲也
    • Organizer
      第7回日本感性工学会春季大会
    • Place of Presentation
      高松(日本)
    • Year and Date
      20120303-4
  • [Presentation] An Attempt of Reconstruction of Object-Oriented Rough Set Models2011

    • Author(s)
      Yasuo Kudo, Ken Kaneiwa, and Tetsuya Murai
    • Organizer
      IEEE GrC 2011
    • Place of Presentation
      高雄(台湾)
    • Year and Date
      20111108-10

URL: 

Published: 2014-09-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi