• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2013 Fiscal Year Final Research Report

Constructing theoretical system for high-dimension, low-sample-size data

Research Project

  • PDF
Project/Area Number 23740066
Research Category

Grant-in-Aid for Young Scientists (B)

Allocation TypeMulti-year Fund
Research Field General mathematics (including Probability theory/Statistical mathematics)
Research InstitutionUniversity of Tsukuba

Principal Investigator

YATA KAZUYOSHI  筑波大学, 数理物質系, 助教 (90585803)

Project Period (FY) 2011 – 2013
Keywords高次元小標本データ / 高次元漸近理論 / PCA / 判別分析 / クラスター分析 / マイクロアレイデータ
Research Abstract

We proposed statistical theories and methodologies for high-dimension, low-sample-size (HDLSS) data. We showed that HDLSS data have two distinct geometric representations. We proposed the noise-reduction methodology that was brought from the geometric representations. We proposed the extended Cross-data-matrix methodology, which offers an unbiased estimator having small asymptotic variance and low computational cost, for parameters appearing in high-dimensional data analysis. We provided two effective discriminant procedures: a distance-based classifier and a geometric classifier, which can ensure high accuracy in misclassification rates and hold misclassification rates less than a threshold.

  • Research Products

    (15 results)

All 2014 2013 2012 2011 Other

All Journal Article (7 results) (of which Peer Reviewed: 7 results) Presentation (6 results) (of which Invited: 3 results) Book (1 results) Remarks (1 results)

  • [Journal Article] A distance-based, misclassification rate adjusted classifier for multiclass, high-dimensional data2014

    • Author(s)
      M. Aoshima, K. Yata
    • Journal Title

      Ann. Inst. Statist. Math.

      Volume: (in press)

    • DOI

      10.1007/s10463-013-0435-8

    • Peer Reviewed
  • [Journal Article] PCA consistency for the power spiked model inhigh-dimensional settings2013

    • Author(s)
      K. Yata, M. Aoshima
    • Journal Title

      J. Mult. Anal.

      Volume: 122 Pages: 334-354

    • DOI

      10.1016/j.jmva.2013.08.003

    • Peer Reviewed
  • [Journal Article] Correlation tests for high-dimensional data using extended cross-data-matrix methodology2013

    • Author(s)
      K. Yata, M. Aoshima
    • Journal Title

      J. Mult. Anal.

      Volume: 117 Pages: 313-331

    • DOI

      10.1016/j.jmva.2013.03.007

    • Peer Reviewed
  • [Journal Article] 高次元データの統計的方法論2013

    • Author(s)
      青嶋誠,矢田和善
    • Journal Title

      日本統計学会誌

      Volume: 43 Pages: 123-150

    • Peer Reviewed
  • [Journal Article] 高次元小標本における統計的推測2013

    • Author(s)
      青嶋誠,矢田和善
    • Journal Title

      数学

      Volume: 65 Pages: 225-247

    • Peer Reviewed
  • [Journal Article] Effective PCA for high-dimension, low-sample-size data with noise reduction via geometric representations2012

    • Author(s)
      K. Yata, M. Aoshima
    • Journal Title

      J. Mult. Anal.

      Volume: 105 Pages: 193-215

    • DOI

      10.1016/j.jmva.2011.09.002

    • Peer Reviewed
  • [Journal Article] Two-stage procedures for high-dimensional data2011

    • Author(s)
      M. Aoshima, K. Yata
    • Journal Title

      Seq. Anal. (Editor's special invited paper)

      Volume: 30 Pages: 356-399

    • DOI

      10.1080/07474946.2011.619088

    • Peer Reviewed
  • [Presentation] PCA consistency for high-dimensional data under the power spiked model2013

    • Author(s)
      K. Yata, M. Aoshima
    • Organizer
      KSS/JSS/CSA International Session in KSS Semi-Annual Meeting
    • Place of Presentation
      Seoul (Korea)
    • Year and Date
      2013-11-02
    • Invited
  • [Presentation] Asymptotic normality for inference on multi-sample, high-dimensional mean vectors under mild conditions2013

    • Author(s)
      K. Yata
    • Organizer
      Fourth International Workshop in Sequential Methodologies
    • Place of Presentation
      Georgia (U.S.A.)
    • Year and Date
      2013-07-18
    • Invited
  • [Presentation] 高次元小標本データの統計学 (日本統計学会各賞受賞者講演)2012

    • Author(s)
      青嶋誠,矢田和善
    • Organizer
      統計関連学会連合大会
    • Place of Presentation
      北海道大学
    • Year and Date
      2012-09-10
  • [Presentation] Effective PCA for large p, small n scenario under generalized models2012

    • Author(s)
      K. Yata
    • Organizer
      Sixth International Workshop on Applied Probability
    • Place of Presentation
      Jerusalem (Israel)
    • Year and Date
      2012-06-14
    • Invited
  • [Presentation] 高次元小標本における統計的推測 (特別講演)2011

    • Author(s)
      矢田和善
    • Organizer
      日本数学会秋季総合分科会特別講演
    • Place of Presentation
      信州大学
    • Year and Date
      2011-09-30
  • [Presentation] Effective PCA for large p, small n context with sample size determination2011

    • Author(s)
      K. Yata
    • Organizer
      Third International Workshop in Sequential Methodologies
    • Place of Presentation
      Stanford (U.S.A.)
    • Year and Date
      2011-06-15
  • [Book] Effective methodologies for statistical inference on microarray studies. In P.E. Spiess (Ed.), Prostate Cancer -From Bench to Bedside2011

    • Author(s)
      M. Aoshima, K. Yata
    • Total Pages
      13-32
    • Publisher
      InTech
  • [Remarks] 研究者総覧(筑波大学)

    • URL

      http://www.trios.tsukuba.ac.jp/researcher/0000000526

URL: 

Published: 2015-06-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi