2023 Fiscal Year Research-status Report
Mathematical modeling and mathematical analysis of bacterial colony patterns
Project/Area Number |
23K03225
|
Research Institution | Tokyo Medical and Dental University |
Principal Investigator |
中山 まどか 東京医科歯科大学, 統合教育機構, 准教授 (20721989)
|
Project Period (FY) |
2023-04-01 – 2026-03-31
|
Keywords | バクテリアコロニー / パターン形成 / 枯草菌 / 細胞集団運動 / スウォーミング / 数理モデル / マルチレベルモデル / 遺伝子制御ネットワーク |
Outline of Annual Research Achievements |
枯草菌は多様なコロニーパターンを形成することが知られている。本研究は、枯草菌の同心円状コロニー形成機構を数理モデルを解析することで解明し、多様な枯草菌コロニーの形態形成を明らかにすることを目的としている。これまで、栄養寒天培地(固体培地)上での実験室コロニーパターンの研究が行われてきた。従来は、寒天濃度(運動のパラメータ)を横軸に、環境栄養濃度(増殖のパラメータ)を縦軸にした、2パラメータによる相図にまとめられてきた。この2パラメータは非常に重要であり、この相図において5種類のパターンの出現条件を分類できていた。しかし横軸に関して中間にある同心円状コロニーの出現条件が不安定であることや、そもそも同心円状コロニーの形成メカニズムが不明であることなど、不明な点が残されていた。本研究は別のパラメータとして、環境pHに着目して進めてきた。特にこのpHが細胞タイプの制御様式を司ると仮定して研究を行なってきた。その結果、スウォーミングとよばれる細胞集団運動が実現できる限界となる環境pHを実験から見出した。既存の3つのコロニーパターンはスウォーミングが含まれるため、この限界pHの発見は極めて重要である。これにより、安定して同心円上コロニーが形成される条件や、柔らかい寒天培地上でのスウォーミングパターン(円盤および枝分かれする密集分枝形態(Dense-Branching Morphology (DBM))コロニー)と非スウォーミングパターン(レース模様パターン)の分岐点が明らかになった。一方で数理モデル・シミュレーションの研究は、少なくとも既存の5パターンが再現できている。今後は、このたび発見したスウォーミングの限界pHを数理モデルに取り入れることで、多様な枯草菌コロニーパターンの形成を詳しく解明していく。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
本研究計画で狙いとして定めていた3パラメータによるコロニーパターンダイアグラムの描出において、選定した3つ目のパラメータである環境pHは予想以上に重要なパラメータであることを明らかにできた。発見したスウォーミング限界pHは他の2パラメータとほとんど独立しており、このことは3次元相図を明らかにするのに強力に寄与する。対応する数理モデルも準備できており、実験と数理の両面で大きく進展したと言える。
|
Strategy for Future Research Activity |
今後は、このたび発見したスウォーミングの限界pHを数理モデルに取り入れることで、多様な枯草菌コロニーパターンの形成を詳しく解明していく。数理モデルとしては、細胞タイプ(非運動性の細胞とスウォーミングする細胞群)ごとに変数を分けたマルチフェーズモデルを用いて数値的・数学的解析を行う。環境pHは単独での細胞運動として栄養走化性にも影響を与えることが過去の申請者らの研究で分かっているので、予想よりも研究進展した場合には必要に応じて単独運動細胞群も数理モデルに加えて検討していく。
|
Causes of Carryover |
年度開始してまもなく、報告した通りのスウォーミング限界pHを発見した。これは他の2パラメータとほとんど独立しているようであり、このことは3次元相図を明らかにする中で、他の2パラメータの振り方を荒くして(実験を削減して)よいということになる。そのため実験用品は当初予定よりやや節約されたため、全額の約1割を次年度に繰り越した。今後も計画通りに研究を進めていくが、数理モデル検証への比率を少々高くできそうである。
|