2023 Fiscal Year Research-status Report
A study of invariants of singularities in birational geometry via arc spaces
Project/Area Number |
23K12958
|
Research Institution | Tokyo Denki University |
Principal Investigator |
柴田 康介 東京電機大学, 工学部, 助教 (60819671)
|
Project Period (FY) |
2023-04-01 – 2028-03-31
|
Keywords | 特異点 / 代数幾何学 / 双有理幾何学 / 弧空間 / 極小対数的食い違い係数 / 商特異点 / PIA予想 / LSC予想 |
Outline of Annual Research Achievements |
極小対数的食い違い係数は双有理幾何学の特異点を研究する際に重要な不変量である。今まで私は、この不変量について弧空間を利用して研究をしてきた。これまでの私の研究では商特異点の中で不変な元で定義される特異点について弧空間を調べることで、極小対数的食い違い係数の重要な予想である下半連続性予想やPIA予想を対数的端末特異点の場合に示すことができていた。 今年度は半不変である元で定義される完全交叉特異点を群の作用による商で定義される特異点に対して、これまで示してきた結果を一般化するために研究をした。この特異点は商特異点の中で不変な元で定義される特異点よりも広いクラスの特異点であり、特に3次元の端末特異点を全て含む特異点であることは知られている。今年度の研究により、この特異点に対しても、対数的端末特異点である場合に、PIA予想と下半連続性予想を示すことができた。これらの研究結果は論文としてまとめ、ジャーナルに投稿中である。 また対数的標準特異点の場合にPIA予想が成り立つことを示すために研究をしていたところPIA予想の反例になる特異点を発見した。今までの研究では対数的標準特異点の場合に弧空間が対数的端末特異点の場合には起こらない現象が起きるためPIA予想の証明ができていなかった。そこでこの現象を理解するために、このような現象が起こる例を多く作り調べたところ極小対数的食い違い係数を弧空間を使い計算をする際に、対数的端末特異点では起こらないことが起きる例を見つけることができ。その例がPIA予想の反例になっていることが分かった。またこの反例を使いfamilyの場合の下半連続性予想は成り立たない例を作ることができた。この結果をまとめ論文に書いている状況である。 これらの研究は中村勇哉氏との共同研究である。
|
Current Status of Research Progress |
Current Status of Research Progress
1: Research has progressed more than it was originally planned.
Reason
これまでの行っていた研究結果を、さらに広い特異点クラスに一般化することができたことと、さらに成り立つと思われていたPIA予想について、対数的標準特異点の場合に反例を見つけることができたため。
|
Strategy for Future Research Activity |
PIA予想の反例の発見には、対数的端末特異点の場合には起こらないが、対数的標準特異点の場合に起こる弧空間の現象を調べていることがきっかけであった。 この現象についてさらに詳しく調べることで対数的標準特異点の場合のLSC予想について研究をしたい。
|
Causes of Carryover |
今年度に所属機関の変更があり、講義を多く担当することになったため、予定とは異なり研究にかける時間が減ることで出張にあまりいけなかったため。
|