• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Research-status Report

ホモロジーシリンダーに関わる群の構造の解明

Research Project

Project/Area Number 23K12974
Research InstitutionYokohama National University

Principal Investigator

野崎 雄太  横浜国立大学, 大学院環境情報研究院, 講師 (40822648)

Project Period (FY) 2023-04-01 – 2028-03-31
Keywordsホモロジーシリンダー / LMO 関手 / 結び目
Outline of Annual Research Achievements

境界付き3次元多様体であってホモロジー的に良い条件を満たすものをホモロジーシリンダーと呼ぶ。ホモロジーシリンダーの間には境界の張り合わせによって積が定まり、それらの集合はモノイドとなる。このモノイドは、曲面の写像類群や3次元多様体の有限型不変量さらにホモロジー同境群と深く関係し、低次元トポロジーの重要な対象が交錯する場と言える。本研究の目的は、ホモロジーシリンダーのなすモノイドから得られる群について、その構造の解明を目指すことである。
今年度は、ホモロジーシリンダーの研究で鍵となる LMO 関手について、佐藤正寿氏(東京電機大学)と鈴木正明氏(明治大学)と共同研究を行った。
特にホモロジーシリンダーのなすモノイドから得られる群において、従来とは異なるトーション元の存在を確認し、その成果を論文として執筆中である。
さらにホモロジーシリンダーを記述する際に結び目が重要な役割を果たす。そこで結び目の研究の一環として、Michel Boileau 氏(Aix Marseille University)と北野晃朗氏(創価大学)と共同研究を行い、その成果を論文として執筆中である。
以上の研究成果を国際集会「Mapping class groups: pronilpotent and cohomological approaches」などで発表した。また、国際集会「Topology and Geometry of Low-Dimensional Manifolds 2023」を主催し、本研究に関連する情報収集や議論を行った。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

1年目ということもあり、現時点で論文等の成果物はない。しかしホモロジーシリンダーや結び目に関して着実に理解を進めており、実際に複数の論文を執筆中である。したがって、おおむね順調に進展していると言える。

Strategy for Future Research Activity

今年度の研究において、LMO 関手への理解が進んだ。来年度はその成果を基に、ホモロジーシリンダーのなすモノイドから得られる群のトーション元に関する研究を推進する。

Causes of Carryover

大学の異動に伴い、計画に変更が生じた。現在進めている共同研究の研究打ち合わせの旅費等として使用する計画である。

  • Research Products

    (7 results)

All 2024 2023

All Journal Article (2 results) (of which Peer Reviewed: 2 results,  Open Access: 2 results) Presentation (5 results) (of which Int'l Joint Research: 2 results,  Invited: 4 results)

  • [Journal Article] Rerouting Planar Curves and Disjoint Paths2023

    • Author(s)
      Takehiro Ito , Yuni Iwamasa , Naonori Kakimura , Yusuke Kobayashi , Shun-ichi Maezawa , Yuta Nozaki , Yoshio Okamoto , Kenta Ozeki
    • Journal Title

      Proceedings of the 50th EATCS International Colloquium on Automata, Languages and Programming (ICALP 2023)

      Volume: - Pages: -

    • DOI

      10.4230/LIPIcs.ICALP.2023.81

    • Peer Reviewed / Open Access
  • [Journal Article] Hardness of Finding Combinatorial Shortest Paths on Graph Associahedra2023

    • Author(s)
      Takehiro Ito , Naonori Kakimura , Naoyuki Kamiyama , Yusuke Kobayashi , Shun-ichi Maezawa , Yuta Nozaki , Yoshio Okamoto
    • Journal Title

      Proceedings of the 50th EATCS International Colloquium on Automata, Languages and Programming (ICALP 2023)

      Volume: - Pages: -

    • DOI

      10.4230/LIPIcs.ICALP.2023.82

    • Peer Reviewed / Open Access
  • [Presentation] On the LMO invariant of 3-manifolds2024

    • Author(s)
      Yuta Nozaki
    • Organizer
      Knot theory, LMO invariants and related topics
    • Int'l Joint Research / Invited
  • [Presentation] ホモロジーシリンダーの非可換 Reidemeister-Turaev トーション2023

    • Author(s)
      野崎雄太
    • Organizer
      阪大トポロジーセミナー
    • Invited
  • [Presentation] A non-commutative Reidemeister-Turaev torsion of homology cylinders2023

    • Author(s)
      Yuta Nozaki
    • Organizer
      Mapping class groups: pronilpotent and cohomological approaches
    • Int'l Joint Research / Invited
  • [Presentation] 結び目群の間の全射準同型とねじれ Alexander 多項式2023

    • Author(s)
      野崎雄太
    • Organizer
      農工大・早大理工セミナー
    • Invited
  • [Presentation] 結び目群の間の全射準同型とねじれ Alexander 多項式2023

    • Author(s)
      野崎雄太
    • Organizer
      横国大幾何トポロジーセミナー

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi