• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2021 Fiscal Year Annual Research Report

New developments of computer-aided research in algebraic geometry

Research Project

Project/Area Number 20H01798
Allocation TypeSingle-year Grants
Research InstitutionHiroshima University

Principal Investigator

島田 伊知朗  広島大学, 先進理工系科学研究科(理), 教授 (10235616)

Co-Investigator(Kenkyū-buntansha) 木村 俊一  広島大学, 先進理工系科学研究科(理), 教授 (10284150)
金銅 誠之  名古屋大学, 多元数理科学研究科, 教授 (50186847)
高橋 宣能  広島大学, 先進理工系科学研究科(理), 准教授 (60301298)
Project Period (FY) 2020-04-01 – 2025-03-31
KeywordsK3曲面 / 自己同型群 / 数値的ネロン・セヴェリ格子 / 楕円ファイブレーション
Outline of Annual Research Achievements

引き続き,K3曲面の自己同型群の生成系を数値的ネロン・セヴェリ格子のデータから計算機を用いて決定する方法の研究を行った.K3曲面の自己同型群の生成系は,数値的ネロン・セヴェリ格子の直交群の元の集合として,一般化された Borcherds-Kondo 法により求めることが(原理的には)できる.しかしこれらの生成元の幾何学的意味を数値的ネロン・セヴェリ格子への作用だけから知ることは一般的に難しい問題である.そこで,自己同型群の生成系を幾何学的に実現するために,切断を持つ楕円K3曲面の Mordell-Weil 群の元の数値的ネロン・セヴェリ格子への作用を計算する方法を開発した.また,生成系により与えられた自己同型群の部分群に与えられた別の元が含まれるかどうかを調べる方法を開発した.この方法は,いままで見つかっている生成系に含まれる元のランダムな語を作ってあらたに見つかった別の自己同型を近似し,その近似の精度を上げていくという確率的なものである.さらにK3曲面上の楕円ファイブレーションを自動的に見つけていくプログラムを書いた.これらの方法を組み合わせることで,K3曲面の自己同型群の生成系で,各元の幾何学的な意味がわかっており,かつ冗長度の小さなものを作ることが可能になる.
例として,トーラス型の6-cuspidalな6次曲線に沿って分岐する射影平面の二重被覆として得られるK3曲面の自己同型群の幾何学的生成系を求めた.この生成系は 463+360 個の元からなる.このK3曲面はBorcherds- Kondo 法によるネフ錐の有限多面体への分割への自己同型群の作用が複数の軌道を持つ(すなわち simple Borcherds type ではない)という意味でも興味深い例である.
このアルゴリズムは他にも広く応用を持つことが期待される.

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

今までに蓄積した,K3曲面およびエンリケス曲面の自己同型群を求めるための Borcherds-Kondo 法に関するアルゴリズム群に多くの改良を加え,適用範囲を拡張することができた.研究実績に記述した,K3曲面上の楕円ファイブレーションの構造を用いて幾何学的な意味がはっきりとわかっている自己同型を見つけるアルゴリズム以外にも,数値的ネロン・セヴェリ格子の階数 26 のユニモジュラー双曲的偶格子(コンウェイ格子)へのいろいろな埋め込みを求めるために,与えられた genusに属する正定値格子を Kneser の近傍法により全て求めるプログラムを実装した.いくつかの実験結果によれば,一般化された Borcherds-Kondo 法が終了するするまでのステップ数(すなわちネフ錐の有限多面体への分割への自己同型群の作用の軌道数)はこの埋め込みに大きく依存することが判明した.したがって,埋め込みを適切に選択することにより,自己同型群の計算がさらに高速になることが期待される.さらに,K3曲面のネフ錐の構造を調べるための補助的なアルゴリズムを数多く作った.例えば,数値的ネロン・セヴェリ格子の与えられたベクトルがネフ錐に含まれるかどうか,与えられたノルム -2のベクトルが非特異有理曲線のクラスであるか,などの判定を行うプログラムを書いた.これらのアルゴリズムは自己同型群の計算結果をチェックする時に有効に使用される.
この結果,関連するアルゴリズム群が非常に巨大になったので,整理を行うとともに,その理論的な背景を講義ノートの形でまとめた.

Strategy for Future Research Activity

一般化された Borcherds-Kondo 法が終了するするまでのステップ数は数値的ネロン・セヴェリ格子のコンウェイ格子への埋め込みに大きく依存する.少ないステップ数で終わるためにはどのような埋め込みを使えばよいのかを探求することが次の課題となる.
K3曲面は物理の様々な曲面にあらわれ,多くの研究がなされている.例えば固体物理学の非常に単純化されたモデルから導出される Apery-Fermi 3-fold は 保型形式の理論や数論的観点からみて非常に美しい構造をもったK3曲面の族である. また Bhabha 散乱や Drell-Yan 散乱に付随したファインマン積分の計算においてピカール数の高いK3曲面が現れ,性質が詳しく調べられている.このような物理から現れるいくつかのK3曲面の自己同型群とネフ錐を詳細に調べる.
また,近年,研究分担者の金銅により自己同型群が有限となる Coble 曲面のクラスが決定された.これは自己同型群が有限となるK3曲面およびエンリケス曲面のクラスの決定という,1980年代および90年代の金銅の仕事の延長である.一方,島田は Brandhorstとの共同研究により,generic なエンリケス曲面の自己同型群の計算に関する Barth-Peters の仕事を拡張した.したがって, 次の課題は generic な Coble 曲面の自己同型群を計算することである.
来年度は出来るだけ多くの研究集会に参加し,また海外より何人かの共同研究者を日本に招聘する.

  • Research Products

    (17 results)

All 2023 2022 2021 Other

All Journal Article (9 results) (of which Int'l Joint Research: 3 results,  Peer Reviewed: 9 results,  Open Access: 8 results) Presentation (6 results) (of which Int'l Joint Research: 5 results,  Invited: 6 results) Remarks (2 results)

  • [Journal Article] A note on Quebbemann’s extremal lattices of rank 642023

    • Author(s)
      Shimada Ichiro
    • Journal Title

      Journal de theorie des nombres de Bordeaux

      Volume: 34 Pages: 813~826

    • DOI

      10.5802/jtnb.1229

    • Peer Reviewed / Open Access
  • [Journal Article] Zariski multiples associated with quartic curves2022

    • Author(s)
      Shimada Ichiro
    • Journal Title

      Journal of Singularities

      Volume: 24 Pages: 169~189

    • DOI

      10.5427/jsing.2022.24g

    • Peer Reviewed / Open Access
  • [Journal Article] Borcherds’ Method for Enriques Surfaces2022

    • Author(s)
      Brandhorst Simon、Shimada Ichiro
    • Journal Title

      Michigan Mathematical Journal

      Volume: 71 Pages: 3~18

    • DOI

      10.1307/mmj/20195769

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Automorphism Groups of Certain Enriques Surfaces2021

    • Author(s)
      Brandhorst Simon、Shimada Ichiro
    • Journal Title

      Foundations of Computational Mathematics

      Volume: 22 Pages: 1463~1512

    • DOI

      10.1007/s10208-021-09530-y

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Rational double points on Enriques surfaces2021

    • Author(s)
      Shimada Ichiro
    • Journal Title

      Science China Mathematics

      Volume: 64 Pages: 665~690

    • DOI

      10.1007/s11425-019-1796-x

    • Peer Reviewed / Open Access
  • [Journal Article] Coble surfaces with finite automorphism group2021

    • Author(s)
      Kondo Shigeyuki
    • Journal Title

      Rendiconti del Circolo Matematico di Palermo Series 2

      Volume: 71 Pages: 829~864

    • DOI

      10.1007/s12215-021-00646-2

    • Peer Reviewed / Open Access
  • [Journal Article] Classification of Enriques surfaces covered by the supersingular K3 surface with Artin invariant 1 in characteristic 22021

    • Author(s)
      KONDO Shigeyuki
    • Journal Title

      Journal of the Mathematical Society of Japan

      Volume: 73 Pages: 301~328

    • DOI

      10.2969/jmsj/81778177

    • Peer Reviewed / Open Access
  • [Journal Article] Sheaves of maximal intersection and multiplicities of stable log maps2021

    • Author(s)
      Choi Jinwon、van Garrel Michel、Katz Sheldon、Takahashi Nobuyoshi
    • Journal Title

      Selecta Mathematica

      Volume: 27 Pages: -

    • DOI

      10.1007/s00029-021-00671-0

    • Peer Reviewed / Open Access / Int'l Joint Research
  • [Journal Article] Modules over geometric quandles and representations of Lie-Yamaguti algebras2021

    • Author(s)
      Takahashi Nobuyoshi
    • Journal Title

      Journal of Lie Theory

      Volume: 31 Pages: 897--932

    • Peer Reviewed
  • [Presentation] あるK3曲面の自己同型群について2023

    • Author(s)
      Ichiro Shimada
    • Organizer
      K3, Enriques Surfaces, and Related Topics
    • Invited
  • [Presentation] Mordell-Weil groups of a certain K3 surface2022

    • Author(s)
      Ichiro Shimada
    • Organizer
      Recent Development in Algebraic Geometry
    • Int'l Joint Research / Invited
  • [Presentation] The automorphism group of a K3 surface birational to a double plane2022

    • Author(s)
      Ichiro Shimada
    • Organizer
      Real Aspects of Geometry
    • Int'l Joint Research / Invited
  • [Presentation] Automorphism groups of Enriques surfaces (joint work with Simon Brandhorst)2022

    • Author(s)
      Ichiro Shimada
    • Organizer
      Japanese-European Symposium on Symplectic Varieties and Moduli Spaces -- Sixth Edition
    • Int'l Joint Research / Invited
  • [Presentation] Computation of automorphism groups of Enriques surfaces (joint work with Simon Brandhorst)2021

    • Author(s)
      Ichiro Shimada
    • Organizer
      ODTU-Bilkent Algebraic Geometry Seminar
    • Int'l Joint Research / Invited
  • [Presentation] Computation of the nef cone and the automorphism group of an Enriques surface (joint work with Simon Brandhorst)2021

    • Author(s)
      Ichiro Shimada
    • Organizer
      Online Workshop on Calabi-Yau Varieties and Related Topics
    • Int'l Joint Research / Invited
  • [Remarks] Computational data of K3 and Enriques surfaces

    • URL

      http://www.math.sci.hiroshima-u.ac.jp/shimada/K3andEnriques.html

  • [Remarks] Computational data on lattices

    • URL

      http://www.math.sci.hiroshima-u.ac.jp/shimada/lattice.html

URL: 

Published: 2023-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi