• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2023 Fiscal Year Annual Research Report

Research of logarithmic vector fields of hyperplane arrangements

Research Project

Project/Area Number 21H00975
Allocation TypeSingle-year Grants
Research InstitutionRikkyo University

Principal Investigator

阿部 拓郎  立教大学, 理学部, 教授 (50435971)

Co-Investigator(Kenkyū-buntansha) 桑原 敏郎  筑波大学, 数理物質系, 准教授 (60524725)
吉永 正彦  大阪大学, 大学院理学研究科, 教授 (90467647)
村井 聡  早稲田大学, 教育・総合科学学術院, 教授 (90570804)
Project Period (FY) 2021-04-01 – 2026-03-31
Keywords超平面配置 / 自由配置 / SPOG配置 / グラフ配置 / 弱コーダルグラフ / 自由経路
Outline of Annual Research Achievements

本年度は充実した研究成果を残すことができた。その中でも厳選した結果について詳述する。
それは弱コーダルグラフを用いたグラフ配置の対数的ベクトル場の射影次元の特徴づけに関する国際共同研究である。グラフ配置が自由であることと、その元のグラフがコーダルグラフであることの同値性はStanleyにより1970年代に示された、代数とグラフ理論との関係に関する、美しい結晶であった。他方、それ以降グラフの構造と対数的ベクトル場の構造に関する本質的な研究はなされていなかったといってよい。例えば最もシンプルな問題として、グラフのどのような構造が対数的ベクトル場の射影次元と関係しているかという問題に対して、本質的な結果は存在しなかった。他方、研究代表者の近年の研究により、これまで全く手のつけようがなかった対数的ベクトル場の射影次元研究に道が開けた。これらを総合して、研究代表者はドイツのL. Kuehne氏、P. Muecksch氏、L. Muehlherr氏と共同研究を実施した。その結果、対数的ベクトル場の射影次元が1となるグラフ配置が、ぴったり弱コーダルグラフという全く異なる文脈で導入されていたコーダルグラフの一般化と対応していることを証明することができた。弱コーダルグラフはアルゴリズム的な観点から導入されたもので、その代数的意味付けは存在せず、この結果が逆に、弱コーダルグラフによい意味付けを与えたともいえる。このような射影次元の特徴づけは、そもそも可能であると誰も想定していなかった結果であり、Stanleyの結果が射影次元0の場合の特徴づけであると考えれば、その次の段階として50年ぶりの新しい結果であるといえる。本結果はこの先様々な理論展開が想定され、対数的ベクトル場の射影次元研究の基盤となることが期待される。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

グラフ配置周りの自由性や射影次元の解析をはじめとした、自由配置をめぐる様々な理論を構築することができてきており、かつ有理Cherednik代数と表現論を用いたSolomon-寺尾理論への関係も、原始微分の離散化をはじめとしていくつか議論にめどが立ちつつある。このように研究計画は順調に進められており、これらを総合して、研究は計画通りに進展していると考えている。

Strategy for Future Research Activity

現在の研究方針を継続する。特に2023年に実施したグラフ配置の射影次元研究は、本研究目的のモデルケースを与えるため、精力的に拡張してゆきたい。まず第一の方向性として、対数的微分加群のケースが考えられる。コーダルグラフの場合、対数的ベクトル場も対数的微分加群もどちらも自由であった。ところが弱コーダルグラフに対応するグラフ配置の対数的ベクトル場の射影次元は1であるのに対して対数的微分加群のそれは1とは限らないことが分かっている。これらは双対関係にあるので一致しないことがあるのは当然であるが、これは予想しない面白い事態である。そこで対数的微分加群が射影次元1となるケースを考えつつ、同時にこれら二つの加群の射影次元の違いに焦点を当てて研究を進めてゆきたい。さらに自然な拡張として射影次元が2となるグラフの探索、及び弱コーダルグラフに対して用いた証明のワイル配置への拡張およびより一般の配置への拡張を試みることで研究を広い視点から再構築する。
また本研究テーマの主要な課題であるSolomon-寺尾多項式研究において、代数幾何における重要な概念であるCastelnouvo-Mumford正則性が重要な役割を果たすことがわかってきた。この正則性はざっと説明すると、対応する層のコホモロジーがある次数以上で消えていることと対応している。他方加群のレベルで見ると、極小自由分解をとった際にi番目のシジジーにあらわれる最高次数を上から抑える不変量である。この次数こそSolomon-寺尾多項式に寄与する部分であることから、この正則性の上限をうまく決定することで、Solomon-寺尾多項式の次数や係数の決定研究を進展させる。

  • Research Products

    (5 results)

All 2024 Other

All Int'l Joint Research (1 results) Journal Article (1 results) (of which Peer Reviewed: 1 results) Presentation (1 results) Remarks (2 results)

  • [Int'l Joint Research] ビーレフェルト大学/ルール大学ボーフム(ドイツ)

    • Country Name
      GERMANY
    • Counterpart Institution
      ビーレフェルト大学/ルール大学ボーフム
  • [Journal Article] Generalization of the addition and restriction theorems from free arrangements to the class of projective dimension one2024

    • Author(s)
      Takuro Abe
    • Journal Title

      Algebraic Combinatorics

      Volume: accepted Pages: --

    • Peer Reviewed
  • [Presentation] Regularity of logarithmic modules and Solomon-Terao polynomials of hyperplane arrangements2024

    • Author(s)
      Takuro Abe
    • Organizer
      Semianr of Algebra, University of Sevilla
  • [Remarks] TAKURO ABE

    • URL

      https://sites.google.com/site/takuroabemath/a-bu-ta-lang

  • [Remarks] researchmap

    • URL

      https://researchmap.jp/7000008882

URL: 

Published: 2024-12-25  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi