2022 Fiscal Year Annual Research Report
クアッドキャビティを用いた光学式圧力計による圧力の絶対値計測
Project/Area Number |
22H01505
|
Allocation Type | Single-year Grants |
Research Institution | National Institute of Advanced Industrial Science and Technology |
Principal Investigator |
武井 良憲 国立研究開発法人産業技術総合研究所, 計量標準総合センター, 主任研究員 (00805145)
|
Project Period (FY) |
2022-04-01 – 2025-03-31
|
Keywords | 真空 / 圧力 / 標準 / ファブリ・ペロ共振器 / 屈折率 / 光学式圧力計 / 熱力学温度 / 分極率 |
Outline of Annual Research Achievements |
本研究の目的は、1 Pa~100 kPa の圧力範囲を対象に、既存の圧力計測技術に依らずに、圧力の絶対値を世界最高精度で計測できる装置の開発である。圧力は、気体の状態方程式および分子密度と屈折率の関係式より、屈折率と温度と分極率から求められる。2022年度の研究実績は大まかに下記の4点である。 ①キャビティの変形量を、ヘリウムと窒素の分極率から補正する手法における課題の一つが、ヘリウムのガス純度である。高純度ヘリウムガスボンベを利用するだけでなく、途中配管からの不純ガスの混入を懸念して、チャンバ直前にガス精製器を導入して供給ヘリウムガスを高純度化した。また今後のガス成分測定のために質量分析計を準備した。 ②ヘリウムを利用した実験において、材料内部へのヘリウムの浸透によりファブリペロ共振器の長さがドリフトする。目標にしている圧力計測精度に対してその影響は無視できない大きさであり、その補正量は小さい方が望ましい。ファブリペロ共振器の材料の選定の一つとして、複数の超低熱膨張材料に対して、他国の研究グループと協力して、ヘリウムの透過量測定実験を行っている。 ③ファブリペロ共振器の材料の熱膨張係数はゼロであることが望ましい。しかし、実測した結果、利用中の材料ではゼロクロス点がなかった。チャンバの温調をさらに改善することで、熱膨張の影響を軽減する。 ④開発中の光学式圧力計は1 Pa ~100 kPa の範囲で他の手法よりも高精度に圧力を計測できる見込みである。性能評価のために、1 Pa 付近で膨張法装置と比較、100 kPa 付近で重錘形圧力天びんと比較する。それら膨張法装置や重錘形圧力天びんの高精度化にも取り組んでいる。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
光学式圧力計には、既存の圧力計測技術に依らずに圧力の絶対値を高精度に計測できる可能性がある。ただし、従来にない新規計測装置であり、実用化のためには、ファブリペロ共振器の周囲の圧力変化に依る変形、ファブリペロ共振器長の経年変化やヘリウム透過に変化など、多くの課題を解決する必要がある。研究開発を進めるにつれて追加の課題も明らかになるが、一つ一つ着実に解決しており本研究は「おおむね順調に進展している」。
|
Strategy for Future Research Activity |
これまでに光学式圧力計の各要素技術を改善した。系全体としての性能を、膨張法装置や重錘形圧力天びんとの比較により評価し、専用チャンバやキャビティ仕様を決定する。
|
Research Products
(4 results)