2023 Fiscal Year Annual Research Report
試験管内リボソーム進化工学によるリボソーム触媒活性の改変
Project/Area Number |
23H01773
|
Allocation Type | Single-year Grants |
Research Institution | Osaka University |
Principal Investigator |
青木 航 大阪大学, 大学院工学研究科, 教授 (10722184)
|
Co-Investigator(Kenkyū-buntansha) |
後藤 佑樹 京都大学, 理学研究科, 教授 (70570604)
|
Project Period (FY) |
2023-04-01 – 2026-03-31
|
Keywords | 人工リボソーム / 合成生物学 |
Outline of Annual Research Achievements |
リボソームは、遺伝コードに従って20種類の天然アミノ酸を重合し、多様なタンパク質を生み出す。もしリボソームの触媒活性を改変できれば、人類が利用可能なポリマー種を大幅に拡張できる。しかし、リボソームは生命の必須因子であり、その触媒活性を自在に改変することは難しかった。申請者はこれまでに、遺伝子を出発物質として試験管内でリボソームを合成することに世界で初めて成功した。この「試験管内リボソーム生合成」は、出発物質となるリボソーム遺伝子に変異を導入するだけで、任意の人工リボソームを自由自在に構築可能である。本申請ではこの技術を基盤に、生体ポリマーの再発明に挑戦する。第一に、 多数のリボソーム変異体を一斉構築・評価可能な「試験管内リボソーム進化工学」を確立する。第二に、試験管内リボソーム進化工学により、D-アミノ酸などの非天然モノマーを効率的に重合する人工リボソームを創出する。本年度は、「試験管内リボソーム生合成」の改良を推進した。申請者は試験管内リボソーム生合成の確立に成功したが、その収量は1 nM程度である。多様な人工リボソームを評価可能とするためには、収量を改善する必要がある。そこで、さまざまな低分子化合物の添加や連続透析などを試みたところ、連続透析法により新生リボソーム由来のシグナルを大きく改善することに成功した。また、新生リボソームのみを特異的に精製可能な方法論を開発し、新生リボソームを濃縮することに成功した。
|
Current Status of Research Progress |
Current Status of Research Progress
2: Research has progressed on the whole more than it was originally planned.
Reason
申請者は試験管内リボソーム生合成の確立に成功したが、その収量は1 nM程度である。多様な人工リボソームを評価可能とするためには、収量を改善する必要がある。そこで、さまざまな低分子化合物の添加や連続透析などを試みた。例えば、rRNAの修飾に重要なS-アデノメチオニンやクラウディングエージェントの添加を試みたが、新生リボソーム由来のシグナルを改善することはできなかった。そこで、連続透析法を検討した。連続透析法とは、無細胞転写翻訳系を、半透膜を有するチューブに入れ、そのチューブを、反応に必要な各種低分子化合物を含む溶液に入れる方法論である。連続透析法により、エネルギーの連続供給と老廃物の除去が可能となり、無細胞転写翻訳系のキャパシティを向上させられる。連続透析法により、新生リボソームの合成量を大きく向上させることに成功した。 また、試験管内リボソーム生合成では、精製した天然リボソームがリボソーム遺伝子を翻訳することで人工リボソームが合成される。この状況で新生リボソームの活性を測定しようと試みても、リボソームを構成する30S小サブユニットと50S大サブユニットは自由に交換可能であり、合成された多くの人工リボソームサブユニットが天然リボソームにトラップされてしまう。そこで、新生リボソームのみを精製・濃縮する方法論を検討した。具体的には、リボソームを構成する16S rRNAと23 S rRNAに、ストレプトアビジンに結合するアプタマーを挿入した。アプタマーを持つ新生リボソームをストレプトアビジンビーズと相互作用させることで、新生リボソームのみを精製することに成功した。
|
Strategy for Future Research Activity |
2024年度は、2023年度の研究を拡張する。具体的には、反応条件の最適化とリボソーム精製条件の最適化をさらに実施し、新生リボソームの収量を向上させる。 また、当初予定の「試験管内リボソーム進化工学」を推進する。具体的には、以下のステップから成る試験管内リボソーム進化工学を開発する。 A) 変異を導入したいリボソーム遺伝子群(rRNA・uL3・uL16・uL27 など)を含むマスタープラスミドを準備する。B) マスタープラスミドに対して網羅的変異を導入し、同時に、リボソームの機能に影響しない16S rRNA helix 6 にDNA バーコードを付与する。C) 変異マスタープラスミドライブラリをPacBio HiFi リードでシーケンスし、各DNA バーコードと変異パターンを対応づける。D) 微小液滴を用いて人工リボソームライブラリを構築する。具体的には、RNA ポリメラーゼ・天然リボソーム・変異マスタープラスミドライブラリ・変異を導入しないリボソーム遺伝子を封入する。rRNA が発現する際に、DNA バーコードはRNA バーコードに変換されて人工リボソームに取り込まれる。各液滴に2 つ以上の変異マスタープラスミドが封入されないようにすることで、人工リボソームを構成するrRNA とr-proteinに導入された変異を、RNA バーコードを解読するだけで決定できる。E) 微小液滴を破裂させて人工リボソームライブラリを回収し、非天然ポリマーと精製タグをエンコードする人工mRNA と反応させる。非天然ポリマーを合成できた人工リボソームをタグレジンでアフィニティー精製する。F) 精製された人工リボソームのRNA バーコードを決定し、優れた非天然ポリマー合成能力を示す人工リボソームを決定する。
|
-
-
-
-
-
-
-
-
-
-
-
-
[Presentation] Reconstitution and characterization of in vitro ribosome biogenesis2023
Author(s)
Yuishin Kosaka, Yumi Miyawaki, Megumi Mori, Shunsuke Aburaya, Chisato Nishizawa, Takeshi Chujo, Tatsuya Niwa, Takumi Miyazaki, Takashi Sugita, Mao Fukuyama, Hideki Taguchi, Kazuhito Tomizawa, Kenji Sugase, Mitsuyoshi Ueda, Wataru Aoki
Organizer
ASBMB