• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Deepening Theory of Quantum Protocols

Research Project

  • PDF
Project/Area Number 24240001
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Fundamental theory of informatics
Research InstitutionSaitama University

Principal Investigator

KOSHIBA Takeshi  埼玉大学, 理工学研究科, 教授 (60400800)

Co-Investigator(Kenkyū-buntansha) 河内 亮周  徳島大学, ソシオテクノサイエンス研究部, 講師 (00397035)
田中 圭介  東京工業大学, 情報理工学(系)研究科, 准教授 (20334518)
安永 憲司  金沢大学, 電子情報学系, 助教 (50510004)
ルガル フランソワ  東京大学, 情報理工学(系)研究科, 准教授 (50584299)
松本 啓史  国立情報学研究所, 情報学プリンシプル研究系, 准教授 (60272390)
小林 弘忠  国立情報学研究所, 情報学プリンシプル研究系, 研究員 (60413936)
西村 治道  名古屋大学, 情報科学研究科, 准教授 (70433323)
Project Period (FY) 2012-04-01 – 2016-03-31
Keywords量子プロトコル / 暗号理論 / 量子アルゴリズム / ゲーム理論 / 量子計算量理論
Outline of Final Research Achievements

We propose a generalized model of quantum interactive proof systems and show the existence of complete problems and a quantum version of Babai's collapse theorem. We construct efficient quantum algorithms for matrix multiplication of semi-rings and for finding triangles in graphs and develop their analysis to obtain their quantum distribution protocols. In ancilla-driven model where computation systems and measurement systems are separable, we show that quantum blind computation is achievable. We characterize a classical computational complexity class AWPP, which corresponds to a quantum computational complexity class BQP, by using the notion of post-selection. We give a natural reason why AWPP is the tightest upper bound of BQP and develop a quantum complexity theoretic approach to the study of AWPP.

Free Research Field

量子計算

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi