• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Development of Next-Generation Semi-structured Data Mining for Large-Scale Knowledge Base Formation

Research Project

  • PDF
Project/Area Number 24240021
Research Category

Grant-in-Aid for Scientific Research (A)

Allocation TypeSingle-year Grants
Section一般
Research Field Intelligent informatics
Research InstitutionHokkaido University

Principal Investigator

Arimura Hiroki  北海道大学, 情報科学研究科, 教授 (20222763)

Co-Investigator(Kenkyū-buntansha) UNO TAKEAKI  国立情報学研究所, 情報学プリンシプル研究系, 教授 (00302977)
MINATO S.  北海道大学, 大学院情報科学研究科, 教授 (10374612)
HIRATA KOUICHI  九州工業大学, 情報工学研究院, 教授 (20274558)
ITO K.  北海道大学, 人獣共通感染症リサーチセンター, 教授 (60396314)
SHIMOZONO S.  九州工業大学, 情報工学研究院, 准教授 (70243988)
KIDA T.  北海道大学, 大学院情報科学研究科, 准教授 (70343316)
Project Period (FY) 2012-04-01 – 2016-03-31
Keywords大規模半構造データ / データマイニング / 高次元データ検索 / イベントストリーム処理 / 知識索引 / 知識発見 / ビッグデータ
Outline of Final Research Achievements

The final goal of this research is to establish a strategy for forming large-scale knowledge bases from massive data and information on a wide range of human activities on social, scientific, and industrial aspects in the cyber space. For this purpose, we study next-generation data mining technologies for efficiently extracting useful knowledge as patterns and rules from semi-structured data, that is, huge and heterogeneous collections of weakly structured data in the cyber space. (1) Efficient semi-structured data mining engines based on optimal pattern discovery framework. (2) Semi-strcuture mining based on spatio-temporal information. (3) Combining semi-structured data mining with stochastic information processing schema. (4) Knowledge federation technologies for large-scale knowledge bases creation. (5) Knowledge indexing technologies for large-scale knowledge bases creation. (6) Development of knowledge base creation systems based on semi-structured data mining.

Free Research Field

知能情報学

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi