• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2017 Fiscal Year Final Research Report

Various aspects of sporadic simple groups

Research Project

  • PDF
Project/Area Number 24340002
Research Category

Grant-in-Aid for Scientific Research (B)

Allocation TypePartial Multi-year Fund
Section一般
Research Field Algebra
Research InstitutionChiba University

Principal Investigator

KITAZUME MASAAKI  千葉大学, 大学院理学研究院, 教授 (60204898)

Co-Investigator(Renkei-kenkyūsha) SAWABE Masato  千葉大学, 教育学部, 准教授 (60346624)
MUNEMASA Akihiro  東北大学, 大学院情報科学研究科, 教授 (50219862)
CHIGIRA Naoki  熊本大学, 大学院先端科学研究部, 准教授 (40292073)
HARADA Masaaki  東北大学, 大学院情報科学研究科, 教授 (90292408)
ABE Toshiyuki  愛媛大学, 教育学部, 教授 (30380215)
SHIMAKURA Hiroki  東北大学, 大学院情報科学研究科, 准教授 (90399791)
Research Collaborator NAKASORA Hiroyuki  
HORIGUCHI Naoyuki  
IRIE Yuuki  
KOBAYASHI Yusuke  
Project Period (FY) 2012-04-01 – 2018-03-31
Keywords有限群 / 散在型単純群 / 符号 / 格子 / グラフ / デザイン
Outline of Final Research Achievements

We have studied the Rudvalis simple group and related algebraic structures (code, lattice) and combinatorial structure (graph, design). Consequently we show the existence of even self-dual code preserved by the Rudvalis group, and give a combinatorial description of some generator. We further define five 2-designs by using a unitary group, and give a new construction of the Rudvalis graph from these 2-designs. We also consider Conway's theorem, which show the relation between the Rudvalis graph and the Hoffman-Singleton graph.
Moreover we have completed the classification of extremal doubly even self-dual codes with 2-transitive automorphism groups by showing non-existence of the remaining case.

Free Research Field

群論,代数的組合せ論

URL: 

Published: 2019-03-29  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi