• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Explicit formulas of $p$-adic spherical functions and their applications

Research Project

  • PDF
Project/Area Number 24540031
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionWaseda University

Principal Investigator

Hironaka Yumiko  早稲田大学, 教育・総合科学学術院, 教授 (10153652)

Co-Investigator(Renkei-kenkyūsha) SATO FUMIHIRO  立教大学, 理学部, 名誉教授 (20120884)
KOMORI YASUSHI  立教大学, 理学部, 准教授 (80343200)
Research Collaborator Rubenthaler Hubert  Strasbourg University, Institute of Mathematics, Professor
Boecherer Siegfried  Mannheim University, Institute of Mathematics, Professor
Project Period (FY) 2012-04-01 – 2016-03-31
Keywordsp進球関数 / ユニタリ・エルミート行列 / ユニタリ群 / p進等質空間 / ヘッケ環 / マクドナルド多項式
Outline of Final Research Achievements

We have investigated the spaces of unitary-hermitian matrices on the basis of spherical functions as $p$-adic homogeneous spaces. We may apply a general expression formula of spherical functions which the researcher got before. The present groups have different root systems according to the parity of the size of matrices, and the Cartan decomposition of the spaces have different shapes according to the residual characteristic of the base field. We have studied at first the odd residual and even-size space, then the other cases. Finally we have a unified description for the results.

Free Research Field

数論

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi