2014 Fiscal Year Final Research Report
Research on the McKay correspondence and derived categories
Project/Area Number |
24540041
|
Research Category |
Grant-in-Aid for Scientific Research (C)
|
Allocation Type | Multi-year Fund |
Section | 一般 |
Research Field |
Algebra
|
Research Institution | Hiroshima University |
Principal Investigator |
ISHII Akira 広島大学, 理学(系)研究科(研究院), 教授 (10252420)
|
Co-Investigator(Kenkyū-buntansha) |
SHIMADA Ichiro 広島大学, 大学院理学研究科, 教授 (10235616)
KIMURA Shun-ichi 広島大学, 大学院理学研究科, 教授 (10284150)
SUMIHIRO Hideyasu 広島大学, 大学院理学研究科, 名誉教授 (60068129)
|
Project Period (FY) |
2012-04-01 – 2015-03-31
|
Keywords | マッカイ対応 / ダイマー模型 / クレパント解消 / 非可換クレパント解消 |
Outline of Final Research Achievements |
We considered problems on dimer models, which are certain bipartite graphs on the 2-torus. We first proved that a non-degenerate dimer model can be made consistent without changing its characteristic polygon. For a dimer model with a finite group action, we defineded a natural action of the same group on the associated 3-dimensional toric variety in such a way that the action on the canonical sheaf is trivial. Given a Gorenstein affine toric 3-fold with a gout action, we considered the problem whether there exists an consistent dimer model with a group action corresponding to it. In many cases, we obtained an affirmative answer.
|
Free Research Field |
代数幾何学
|