• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Research on the McKay correspondence and derived categories

Research Project

  • PDF
Project/Area Number 24540041
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Algebra
Research InstitutionHiroshima University

Principal Investigator

ISHII Akira  広島大学, 理学(系)研究科(研究院), 教授 (10252420)

Co-Investigator(Kenkyū-buntansha) SHIMADA Ichiro  広島大学, 大学院理学研究科, 教授 (10235616)
KIMURA Shun-ichi  広島大学, 大学院理学研究科, 教授 (10284150)
SUMIHIRO Hideyasu  広島大学, 大学院理学研究科, 名誉教授 (60068129)
Project Period (FY) 2012-04-01 – 2015-03-31
Keywordsマッカイ対応 / ダイマー模型 / クレパント解消 / 非可換クレパント解消
Outline of Final Research Achievements

We considered problems on dimer models, which are certain bipartite graphs on the 2-torus. We first proved that a non-degenerate dimer model can be made consistent without changing its characteristic polygon. For a dimer model with a finite group action, we defineded a natural action of the same group on the associated 3-dimensional toric variety in such a way that the action on the canonical sheaf is trivial. Given a Gorenstein affine toric 3-fold with a gout action, we considered the problem whether there exists an consistent dimer model with a group action corresponding to it. In many cases, we obtained an affirmative answer.

Free Research Field

代数幾何学

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi