• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2016 Fiscal Year Final Research Report

Residue theory on singular varieties and its applications

Research Project

  • PDF
Project/Area Number 24540060
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionHokkaido University

Principal Investigator

SUWA Tatsuo  北海道大学, ー, 名誉教授 (40109418)

Co-Investigator(Renkei-kenkyūsha) ASUKE Taro  東京大学, 数理科学研究科, 准教授 (30294515)
OHMOTO Toru  北海道大学, 理学研究院, 教授 (20264400)
OKA Mutsuo  東京理科大学, 理学部, 嘱託教授 (40011697)
TAKEUCHI Kiyoshi  筑波大学, 数理物質科学研究科, 教授 (70281160)
TAJIMA Shinichi  筑波大学, 数理物質科学研究科, 教授 (70155076)
NAKAMURA Yayoi  近畿大学, 理工学部, 講師 (60388494)
YOKURA Shoji  鹿児島大学, 理学部, 教授 (60182680)
Project Period (FY) 2012-04-01 – 2017-03-31
Keywords幾何学 / 複素解析幾何学 / 特性類の局所化 / 相対コホモロジー / Alexander 双対性 / 留数 / 特異多様体 / 特異葉層構造
Outline of Final Research Achievements

The localization theory of characteristic classes developed by the principal investigator turned out to be very effective in a wide range of problems related to characteristic classes mainly in complex analytic geometry. During the period, we obtained the following results.
(1) As to the degeneracy loci problem of vector bundle homomorphisms, we constructed a universal localization. (2) We generalized the Lefschetz coincidence point formula. For this, the local and global homology classes we introduced played key roles. (3) We developed the theory of relative Bott-Chen cohomology and give some applications. (4) We discovered a simple way of expressing Sato hyperfunctions. For this we strengthened the theory of relative Dolbeault cohomology. We also gave simple expressions of fundamental operations on the hyperfunctions.

Free Research Field

複素解析幾何学

URL: 

Published: 2018-03-22  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi