• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Study of antipodal sets in symmetric spaces with its extension and application

Research Project

  • PDF
Project/Area Number 24540064
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionUniversity of Tsukuba

Principal Investigator

TASAKI Hiroyuki  筑波大学, 数理物質系, 准教授 (30179684)

Co-Investigator(Renkei-kenkyūsha) TANAKA Makiko  東京理科大学, 理工学部, 教授 (20255623)
IKAWA Osamu  京都工芸繊維大学, 工芸科学研究科, 教授 (60249745)
AKAI Takashi  首都大学東京, 理工学研究科, 准教授 (30381445)
IRIYEH Hiroshi  東京電機大学, 未来科学部, 准教授 (30385489)
Project Period (FY) 2012-04-01 – 2015-03-31
Keywords対称空間 / 対蹠集合 / 実形の交叉 / 複素旗多様体 / 有向実Grassmann多様体 / 対称三対
Outline of Final Research Achievements

We showed a necessary and sufficient condition for the intersection of two real forms in a Hermitian symmetric space of compact type to be discrete and proved that the discrete intersection is an orbit of a Weyl group in a joint work with Makiko Tanaka and Osamu Ikawa. We partly extended these results to two real forms in a complex flag manifold in a joint work with Hiroshi Iriyeh and Takashi Sakai.
We associated antipodal sets in real oriented Grassmann manifolds with certain combinatorial objects and classified antipodal sets in the case where the rank is less than 5.

Free Research Field

微分幾何学

URL: 

Published: 2016-06-03   Modified: 2018-02-02  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi