• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Compactification of Riemannian manifolds and embeddings of graphs

Research Project

  • PDF
Project/Area Number 24540072
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionKanazawa University

Principal Investigator

Kasue Atsushi  金沢大学, 数物科学系, 教授 (40152657)

Co-Investigator(Kenkyū-buntansha) Hattori Tae  石川工業高等専門学校, 一般教育, 講師 (40569365)
Project Period (FY) 2012-04-01 – 2016-03-31
Keywordsリーマン多様体 / ネットワーク / 理想境界 / ディリクレ形式 / ディリクレエネルギー有限写像 / ランダムウォーク / スペクトルギャップ / 双曲埋め込み
Outline of Final Research Achievements

We study a connected nonparabolic, or transient network compactified with the Kuramochi boundary, and show that the random walk converges almost surely to a random variable valued in the harmonic boundary, and a function of finite Dirichlet energy converges along the random walk to a random variable almost surely and in L2. We also give integral representations of solutions of Poisson equations on the Kuramochi compactification.  We also study finite connected graphs which admit quasi monomorphisms to hyperbolic spaces and give geometric bounds for the Cheeger constants in terms of the volume, an upper bound of the degree, and the quasi monomorphism. Moreover we develop a potential theory of nonlinear networks in the frame work of modular sequence spaces.

Free Research Field

数物科学系

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi