• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Topology of conformally flat Lorentz manifold and various geometric structures

Research Project

  • PDF
Project/Area Number 24540087
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionJosai University (2014)
Tokyo Metropolitan University (2012-2013)

Principal Investigator

KAMISHIMA Yoshinobu  城西大学, 理学部, 教授 (10125304)

Co-Investigator(Kenkyū-buntansha) 長谷川 敬三  新潟大学, 人文社会・教育科学系, 教授 (00208480)
相馬 輝彦  首都大学東京, 理工学研究科, 教授 (50154688)
Project Period (FY) 2012-04-01 – 2015-03-31
Keywords擬リーマン幾何学 / ローレンツ幾何学 / 微分トポロジー / Developing / Holonomy / Uniformization / 平坦
Outline of Final Research Achievements

When the curvature form for the Cartan connection of the parabolic geometry vanishes, a geomeric manifold has a flat structure. The Riemannian flat manifolds have been studied for a long time. In this note we study conformal Lorentz structure as a pseudo-Riemannian structure. If the Weyl conformal curvature tensor vanishes for a Lorentz manifold, it is called a conformally flat Lorentz manifold. We observed that its geometry and topology. We have shown the following results which never show up in Riemannian geometry. (1) If M is a compact complete Lorentzian similarity manifold, then M is a Lorentzian flat space form.

Free Research Field

幾何学とトポロジー

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi