• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2014 Fiscal Year Final Research Report

Noncommutative functional identites with non formal deformation quantization and its application

Research Project

  • PDF
Project/Area Number 24540097
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Geometry
Research InstitutionTokyo University of Science

Principal Investigator

YOSHIOKA Akira  東京理科大学, 理学部, 教授 (40200935)

Co-Investigator(Renkei-kenkyūsha) OMORI Hideki  東京理科大学, 理工学部, 教授 (20087018)
MAEDA Yoshiaki  東北大学, 理学部, 教授 (40101076)
MIYAZAKI Naoya  慶應義塾大学, 経済学部, 教授 (50315826)
Project Period (FY) 2012-04-01 – 2015-03-31
Keywords変形量子化 / シンプレクティック幾何学 / ポアソン幾何学 / 非可換幾何学 / 量子化 / 力学
Outline of Final Research Achievements

We consider non-formal deformation quantizaztion. In the obtained star product aligebra, we consider star exponntaials. Using the star exponentials, we can construct certain noncommutative functional identites. As an application, we investigate a concrete MIC-Kepler problem, its eigenvalues, and also its noncommutative symplectic reduction, with non formal star products. Based on the investitation on the MIC-Kepler problem,we extend the noncommutative reduction to general situation with S1 symmetry group.
Using star exponentials,we also obtain vacumms, with which we can obtain
representation of non-formal star product algebras.

Free Research Field

シンプレクティック・ポアソン幾何学、変形量子化

URL: 

Published: 2016-06-03  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi