• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

New development in non-commutative harmonic analysis related to singular integrals - A fusion of representation theory and real analysis

Research Project

  • PDF
Project/Area Number 24540191
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Basic analysis
Research InstitutionKeio University

Principal Investigator

KAWAZOE Takeshi  慶應義塾大学, 総合政策学部, 教授 (90152959)

Research Collaborator NAKAI Eiichi  茨城大学, 理学部, 教授 (60259900)
MIYACHI Akihiko  東京女子大学, 現代教養学部, 教授 (60107696)
Anker J-Ph.  Universite d'Orleas, Bâtiment de Mathématiques, 教授
Koufany K.  Universite de Lorraine, 教授
Peng L.  北京大学, 数学科学学院, 教授
Lie Heping  北京大学, 数学科学学院, 教授
Lie Jianming  北京大学, 数学科学学院, 助教授
Daher R.  University Hassan II, Faculty of Sciences, 教授
Abouelaz A.  University Hassan II, Faculty of Science, 教授
Mejjaoli H.  King Faisal University, College of Science, 教授
Project Period (FY) 2012-04-01 – 2016-03-31
Keywords調和解析 / 非可換調和解析 / ヤコビ変換 / hypergroup / ハーディ空間 / アーベル変換
Outline of Final Research Achievements

As a target of non-commutative harmonic analysis, mainly, on the Jacobi hyper-group, we investigate (H1,L1) boundedness of maximal functions, Littlewood-Paley's function and Lusin's area function and the Kunze-Stein phenomenon. In conventional approach, we have used the Jacobi transform and its inverse. However, in this research, we use the Abel transform and its inverse. As for maximal functions and Littlewood-Paley's function, we can obtain (H1,L1) boundedness, however, for Lusin's area function we have to modify the function to deduce (H1,L1) boundedness. Although the endpoint estimate of the Kunze-Stein phenomenon was already known, by using the present method, we can give an alternative proof.

Free Research Field

調和解析

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi