• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Final Research Report

Large deviation principle and multifractal analysis in dynamical systems

Research Project

  • PDF
Project/Area Number 24540212
Research Category

Grant-in-Aid for Scientific Research (C)

Allocation TypeMulti-year Fund
Section一般
Research Field Global analysis
Research InstitutionHiroshima University

Principal Investigator

Chung Yong Moo  広島大学, 工学(系)研究科(研究院), 准教授 (20314734)

Co-Investigator(Renkei-kenkyūsha) TAKAHASI Hiroki  慶應義塾大学, 理工学部, 准教授 (00467440)
SUMI Naoya  熊本大学, 自然科学研究科, 教授 (50301411)
MIKAMI Toshio  津田塾大学, 学芸学部, 教授 (70229657)
Project Period (FY) 2012-04-01 – 2016-03-31
Keywords力学系 / 大偏差原理 / マルチフラクタル
Outline of Final Research Achievements

We obtained a criterion to hold the large deviation principle for smooth dynamical systems on the interval. If a multimodal map without flat critical points has the following properties: (1) the exponential growth of the derivative on the set of critical values with respect to the time evolution; (2) the sub-exponential slow recurrence of the critical orbits; (3) the topological exactness, the large deviation principle of level 2 holds. From our result it is shown that almost every stochastic quadratic map satisfies the large deviation principle. Moreover we gave a representation of the Birkhoff spectrum by using thermodynamic formalism, and showed its continuity.

Free Research Field

力学系理論

URL: 

Published: 2017-05-10  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi