• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2015 Fiscal Year Annual Research Report

力学系・グレブナー基底・層コホモロジーを用いた超高性能符号開発

Research Project

Project/Area Number 24684007
Research InstitutionKyushu University

Principal Investigator

平岡 裕章  東北大学, 原子分子材料科学高等研究機構, 准教授 (10432709)

Project Period (FY) 2012-04-01 – 2016-03-31
Keywords近似最尤推定復号 / 位相的データ解析 / パーシステントホモロジー
Outline of Annual Research Achievements

今年度はこれまで得られた成果の統合を行うとともに、特に今後の挑戦的な課題探索にも取り掛かった。なかでも、近似最尤推定復号の力学系的振る舞いの解析に位相的データ解析を適用する研究を重点的に行った。力学系の不変集合を近似的に特徴付ける方法として、相空間から有限点集合を(例えばランダムに)選び、それらの点列が力学系の流れに従ってどのように動いていくかを調べた。このとき、空間点列を直接扱っては情報量が膨大になることから、なんらかの意味で粗視化する必要があるが、ここにパーシステントホモロジーを適用する方法について検討をおこなった。

ここでの問題点は、従来のパーシステントホモロジーでは、空間方向へのフィルトレーションをいれることで解像度を変える操作が可能であるが、この空間解像度の変化と同時に時間方向の遷移を捉える方法論はまだ未開発であることが挙げられる。しかしながら、この設定は2つのAn型quiver(箙)のテンソル積で定義される代数上での表現を考えることに帰着され、そこで定まる表現の直既約分解を一般的に調べる問題は非常に困難であることが知られている。これを踏まえて今年度は、(1)テンソル積代数が有限型になるクラスを特徴づけし、(2)有限型の場合に具体的に直既約分解を構成するアルゴリズムを開発した。これら二つの成果はいずれもAuslander-Reiten理論を用いることで得られた。

一方で、一般化パーシステント加群の層コホモロジーを用いた定式化をネットワーク符号へ応用する問題にも取り掛かった。この問題については、まずJustin Curry氏の学位論文や関連する論文の細部を調査することから始めた。特にentrance path圏や余層ホモロジーや層コホモロジーの情報流的意味づけについて考察をおこなった。しかしながら、現時点では新たな成果は得られておらず、今後の展開が期待される。

Research Progress Status

27年度が最終年度であるため、記入しない。

Strategy for Future Research Activity

27年度が最終年度であるため、記入しない。

Causes of Carryover

27年度が最終年度であるため、記入しない。

Expenditure Plan for Carryover Budget

27年度が最終年度であるため、記入しない。

  • Research Products

    (8 results)

All 2016 2015 Other

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (4 results) (of which Int'l Joint Research: 3 results,  Invited: 4 results) Remarks (1 results) Funded Workshop (1 results)

  • [Journal Article] Persistence Modules on Commutative Ladders of Finite Type2016

    • Author(s)
      Emerson G. Escolar and Yasuaki Hiraoka
    • Journal Title

      Discrete and Comput. Geom

      Volume: 55 Pages: 100-157

    • DOI

      10.1007/s00454-015-9746-2

    • Peer Reviewed
  • [Journal Article] Optimal Cycles for Persistent Homology Via Linear Programming2015

    • Author(s)
      Emerson G. Escolar and Yasuaki Hiraoka
    • Journal Title

      Mathematics for Industry, Spring

      Volume: 13 Pages: 79-96

    • DOI

      10.1007/978-4-431-55420-2-5

    • Peer Reviewed
  • [Presentation] The lifetime sum and the Tutte polynomial in Linial-Meshulam random complexes2016

    • Author(s)
      平岡裕章
    • Organizer
      Workshop on Random and Statistical Topology
    • Place of Presentation
      東北大学原子分子材料科学高等研究機構(宮城県仙台市)
    • Year and Date
      2016-02-17 – 2016-02-19
    • Int'l Joint Research / Invited
  • [Presentation] Topological data analysis on materials science: statistics and continuation2015

    • Author(s)
      平岡裕章
    • Organizer
      Workshops at Oberwolfach in 2015 (Computational Geometric and Algebraic Topology)
    • Place of Presentation
      Oberwolfach (ドイツ)
    • Year and Date
      2015-10-11 – 2015-10-17
    • Int'l Joint Research / Invited
  • [Presentation] Topological Data Analysis: Network, Sensor, and Material2015

    • Author(s)
      平岡裕章
    • Organizer
      22世紀創造のための数学
    • Place of Presentation
      富士ソフトアキバプラザ/アキバホール(東京都千代田区)
    • Year and Date
      2015-09-28 – 2015-09-29
    • Invited
  • [Presentation] Random Topology, Minimum Spanning Acycle, and Persistent Homology2015

    • Author(s)
      平岡裕章
    • Organizer
      Dynamics, Topology and Computations
    • Place of Presentation
      Bedlewo (ポーランド)
    • Year and Date
      2015-06-15 – 2015-06-20
    • Int'l Joint Research / Invited
  • [Remarks] 平岡研究室 ホームページ

    • URL

      http://www.wpi-aimr.tohoku.ac.jp/hiraoka_labo/

  • [Funded Workshop] Workshop on Random and Statistical Topology2016

    • Place of Presentation
      東北大学原子分子材料科学高等研究機構(宮城・仙台)
    • Year and Date
      2016-02-17 – 2016-02-19

URL: 

Published: 2017-01-06  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi