• Search Research Projects
  • Search Researchers
  • How to Use
  1. Back to project page

2012 Fiscal Year Research-status Report

実簡約群上の球関数とアルキメデスゼータ積分

Research Project

Project/Area Number 24740025
Research Category

Grant-in-Aid for Young Scientists (B)

Research InstitutionSeikei University

Principal Investigator

石井 卓  成蹊大学, 理工学部, 准教授 (60406650)

Project Period (FY) 2012-04-01 – 2015-03-31
KeywordsRankin-Selberg法 / アルキメデスゼータ積分 / Whittaker関数 / 離散系列表現
Research Abstract

実リー群上のWhittaker関数の明示公式の応用として、以下のような保型L関数に対する局所ゼータ積分の計算を行った。
(1)一般線形群GL(n)の標準L関数と2次外積L関数
Bump-Friedberg (1990)による、上記の2つのL関数を同時に解析接続するような複素2変数のゼータ積分のアルキメデス部分の計算を実行した。局所ゼータ積分は、GL(n)のWhittaker関数と[n/2]変数のSchwartz-Bruhat関数の組を含む積分である。GL(n,R)の主系列表現に対するWhittaker関数の明示公式を用いて、局所ゼータ積分が2つのL関数の局所L因子の積と等しくなるようなWhittaker関数とSchwartz-Bruhat関数の組を明示的に与えた。これにより大域的な2次外積L関数についての関数等式も従う。
(2)2次斜交群GSp(2)の標準L関数とスピノールL関数
Bump-Friedberg-Ginzburg (1999)は、このL関数に対してもSiegel Eisenstein級数とKilingen Eisenstein級数を用いた複素2変数のゼータ積分を与えている。これまでの研究で蓄積されてきたSp(2,R)のWhittaker関数の明示公式を用いることにより、実素点において主系列表現や大きな離散系列表現を生成している場合に、Whittaker関数と2つのEisenstein級数を構成する切断を適切に選ぶことにより、アルキメデスゼータ積分が標準L関数とスピノールL関数の局所L因子の積になることを証明した。

Current Status of Research Progress
Current Status of Research Progress

2: Research has progressed on the whole more than it was originally planned.

Reason

24年度に研究を予定していたGL(n)の2次外積L関数の局所理論については、おおむね予定していた通りの成果を挙げることができた。また、GL(3)×GL(2)の6次のオイラー積をもつL関数に対する局所ゼータ積分の計算は最後まで実行できなかったが、当初26年度に研究を進める予定であったGSp(2)のL関数については、ある程度の結果を出すことができた。

Strategy for Future Research Activity

平野幹氏(愛媛大学)、宮崎直氏(北里大学)との共同研究であるGL(3)×GL(2)のアルキメデスゼータ積分の計算、ならびにGSp(2)上のBump-Friedberg-Ginzburgのゼータ積分の計算を完成させる。

Expenditure Plans for the Next FY Research Funding

上記共同研究についての研究連絡や、関連分野の研究集会に出席するための出張旅費に使用する予定である。

  • Research Products

    (5 results)

All 2013 Other

All Journal Article (2 results) (of which Peer Reviewed: 2 results) Presentation (3 results) (of which Invited: 2 results)

  • [Journal Article] Archimedean zeta integrals on GL_n×GL_m and SO_{2n+1}×GL_m2013

    • Author(s)
      Taku Ishii and Eric Stade
    • Journal Title

      Manuscripta Mathematica

      Volume: 141 Pages: 485-536

    • DOI

      10.1007/s00229-012-0581-y

    • Peer Reviewed
  • [Journal Article] Whittaker functions on orthogonal groups of odd degree2013

    • Author(s)
      Taku Ishii
    • Journal Title

      Journal of Lie Theory

      Volume: 23 Pages: 85-112

    • Peer Reviewed
  • [Presentation] Pieri-type formulas for GL(n,R)-Whittaker functions and its application

    • Author(s)
      Taku Ishii
    • Organizer
      超幾何関数とその周辺
    • Place of Presentation
      東京大学玉原国際セミナーハウス
  • [Presentation] Archimedean zeta integrals for the exterior square L-functions on GL(n)

    • Author(s)
      Taku Ishii
    • Organizer
      Kyoto conference on automorphic forms
    • Place of Presentation
      京都大学
    • Invited
  • [Presentation] Archimedean L-factors for standard L-functions attached to non-holomorphic Siegel modular forms of degree 2

    • Author(s)
      Taku Ishii
    • Organizer
      保型表現とその周辺
    • Place of Presentation
      京都大学数理解析研究所
    • Invited

URL: 

Published: 2014-07-24  

Information User Guide FAQ News Terms of Use Attribution of KAKENHI

Powered by NII kakenhi